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ABSTRACT:

In this paper we describe how to extend the Markov/Gibbs random field model used for texture classification to a multi-resolution
approach in the context of land cover analysis. Our method allows a scale-invariant analysis of image data by applying single scale
classification on different resolution levels of the input image. Finally, the independent but highly correlated outcomes are joined.
Evaluating a set of four different landcover classes, sampled in five different resolutions leads to 15000 combination results. Based
on ground truth data of land coverage, all results were analysed for their correctness. We present an appropriate strategy, using
reclassification results to dynamically choose one combination. Our experiments expose a clear tendency towards certain combinations
which support the proposed approach. By priotarising those resolutions with a better reclassification result we achieve a median
correctness ratio of 99% when incorporating all regions of our test scene.

KURZFASSUNG:

Dieser Aufsatz zeigt, wie das "Markov/Gibbs random field’-Modell zur Texturklassifikation im Kontext der Landnutzungsanalyse um
einen Multiresolutionsansatz erweitert werden kann. Die dargestellte Methode ermdglicht es, eine skalierungsunabhéngige Analyse der
Bilddaten durchzufiihren. Zunéchst wird die Klassifikation auf jeder Ebene einer aus dem Eingangsbild erstellten Auflosungspyramide
durchgefiihrt. Im Anschluss werden die einzelnen, stark korrelierten Klassifikationsergebnisse zusammengefiihrt. Durch das Auswerten
von vier Landnutzungsklassen, die in fiinf verschiedenen Auflosungsstufen vorliegen, ergeben sich 15000 mogliche Kombinationen,
die Ergebnisse zu vereinen. Basierend auf Referenzdaten fiir die Landnutzung sind alle Resultate auf ihre Korrektheit hin untersucht
worden. Es wird eine Strategie vorgestellt, mit der eine Kombination dynamisch anhand der Reklassifikation gewéhlt. Experimente
zeigen eine deutliche Tendenz zu bestimmten Auflosungen, welche die vorgestellte Strategie bestétigen. Indem Auflosungen mit einem
hoheren Reklassifikationsergebnis bevorzugt werden, erreichen wir eine Korrektheitsrate von 99% bezogen auf den Median sémtlicher
im Testdatensatz enthaltenen Regionen.

1 INTRODUCTION process each level of a resolution pyramid, consisting of sub-
sequently subscaled images. This publication aims at present-
ing an appropriate strategy to merge segmentation results of the
resolution pyramid. An overview of this process can be seen in
Figure 1. The Markov/Gibbs random field model, providing the

Today, automation and semi-automation for quality assurance pro-
cesses steadily gain more interest due to increasing amounts of
mostly digital data. When looking at land cover analysis, not
only is digital imagery used for interpretation, but as well for ver-

ification and update of tagged regions stored in GIS databases. Image
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Thus, the efficiency of today’s workflow — which is generally [ Downsample
done manually — can be greatly improved by using classification L -
algorithms. Apart from fully automated systems, semi-automated ST
systems which recommend particular regions to be verified man- 1
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ually, provide a very robust, yet still efficient way to disburden
human operators.

In our knowledge-based interpretation and verification system
GeoAIDA (Becker et. al., 2008) several operators are used to hi-
erarchically analyse image data. Area processing is done using
a classification system which incorporates a Markov/Gibbs ran-
dom field model as proposed by Gimel’farb (Gimelfarb, 1996).
Results of the interpretation show an overall very high quality,
anyhow, they vary both in quality and accuracy, depending on
parameters of the input data, e.g. spatial resolution of the im-
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Figure 1: System structure

ages. Furthermore, land cover classes feature diverse structure
information in different scales. Hence, we extend the classifica-
tion approach, using a multi-resolution method.

We use the single scale Markov/Gibbs random field model to

foundation for our texture classifier, proved itself reliable, robust
and accurate for practical application in a semi-automatic verifi-
cation and update system for GIS data (Helmholz et. al., 2007).
For an introduction to Markov random fields and Gibbs distribu-



tions see (Pérez, 1996).

2 FEATURE EXTRACTION USING A MARKOV/GIBBS
RANDOM FIELD MODEL

As already stated in section 1, the Markov/Gibbs random field
model is used as a classifier for each resolution level. In the fol-
lowing, this classifier will be referenced as Gibbs-classificator.
The model is characterised by describing the image as a Markov
field while incorporating Gibbs probability distributions. Using
a local region at a time, a pixel-wise classification result is ob-
tained.

‘With the Markov/Gibbs random field, textural similarities are mod-
eled by several pairwise pixel interactions. Within the image, i. e.
the 2D lattice Markov random field, structures are described by
so called clique families, that basically contain information about
characteristic pixel pairs and their distance to each other. The
probability of a clique is modelled by the Gibbs potentials. The
higher this potential, the more probable is this specific pixel con-
figuration.

If limited to a single channel, the major information is given by
intensity differences for different distances. Thus, Grey Level
Difference Histograms (GLDHs) are used for feature extraction.
Referring to multiple channels, we also use inter channel differ-
ence histograms. Three channels are used for texture analysis.
Since we aim at an area-wide classification including both nature
and settled area, I'RG (Infrared, Red, Green) images are gener-
ally better suited (due to chlorophyll-caused Ir emissions) then
RGB (Red, Green, Blue).

3 MULTI-RESOLUTION IMAGING

Not surprisingly, the quality and composition of input images is
very important for texture classification. One crucial aspect is the
spatial resolution. The higher the resolution, the more detailed
the observed scene. While such detailed information can be in-
dispensable for some applications, it also might provide irrelevant
data for others. Detailed structures may suffer from irregularity
within local processing areas, which complicates classification.
Apart from this, high spatial resolution requires massive amounts
of data to process, which is neither desired nor always needed.
Hence, when aiming at optimal input data for a classification
problem, resolution is one of the key aspects.

In our project, classification is used for segmenting the scene by
given usage classes, e. g. settlement, cropland, industry, and for-
est. As already described in section 2, this classification is done
pixel-wise by incorporating a local neighbourhood around each
pixel.

The type of data that is contained in a region depends on the
scene, spatial resolution and region size. The importance of res-
olution and region size for recognition can easily be seen in Fig-
ure 2. Both images show a 32x32 pixel section with texture
from a settlement. In the image on the left part of the figure
each pixel corresponds to an area with 1m?. While some struc-
tures like houses (with shadows) and gardens can be recognised,
it would be hard to distinguish between different classes of popu-
lation density. With smaller region size, this would be even more
problematic. On the right an 8m resolution image is depicted,
which includes the 1m cutout as well. Here, every pixel covers
64m>%. A region of this size covers several houses, streets and
gardens. While it would be not possible to distinguish individual
houses, the nature of the settlement stands out nicely.

Figure 2: 1m resolution cutout (1) of 8m resolution texture (r).
Both windows are 32 x32 pel.

In our application, the texture classifier has to differentiate be-
tween several classes, that is textures. These textures might vary
greatly in terms of area coverage i.e. how detailed the texture is
structured. Thus, there is nothing like a fixed region size or res-
olution so that such a classifier might work optimally. Another
aspect limiting the appropriate region size is that with growing
sizes processing time is increasing non-linearly. Since our project
is aiming to be used for production and quality assessment of geo-
spatial data on a regular basis, processing time is a crucial point.
Hence, an approach to use small region sizes without crippling
the texture classification is needed: multi-hierarchical classifica-
tion.

For maintenance reasons the multi-hierarchical approach is not
included into the Gibbs-classifier itself. Therefore, further single-
scale segmentation methods can be easily adopted to the frame-
work. We opted for a structure as depicted in Figure 1. The same
classifier is used in several runs. Each run classifies the same
scene, but with decreasing image resolution. The results are fi-
nally merged to an overall result.

Merging several classification results is a non-trivial task. When
classifying an unknown scene, no result is per se superior to a
competing result. The only way to obtain a merging strategy is
by deriving it from a training sample.

3.1 Merging Strategy

From the supervised training of the Gibbs-classifier a training set
is available, that can be used to determine a merging strategy.
Given a perfect training sample and loose time constraints, the
optimal strategy could be found through a brute force approach:
By evaluating every possible combination of results the best strat-
egy can be found. Unfortunately both requirements cannot be
fulfilled in practice. Our system has to cope with fast changing
scenarios. Thus, training has to be done quite regularly and fast.
To always have access to a perfect training sample is even more
limiting. Without such a sample a brute force approach is very
prone to overfitting and other problems. For a robust algorithm
we needed to introduce some constraints.

The initial classification steps are as follows: each texture class
has a resolution level on which it can be segmented optimally, de-
pending on structure size of the observed objects. The level might
not be identically for different classes, though. The best level for
each class is estimated by reclassifying the training sample:

1. Train classifier with training data.
2. Reclassify training data.
. Compute (re-)classification result using training data.
4. Downsample training data and proceed with step 1.
From this we get one reclassification quality result for each res-

olution level. Each result shows how a trained texture class per-
forms on a given resolution. Just determining the best resolution



level for each class and superimposing them into a final result is
not optimal, though. In the general case the results are conflict-
ing. We came up with a solution that uses these conflicts to gain
an advantage:

Class-wise true and false positives are calculated, then normalised
by the resolution and region size. From this data we especially
obtain which resolution is best suited for a given class, of course
limited to the offered resolution levels. For each class c, the res-
olution level which maximises the term g(c) := t, — fp with ¢,
true positive, f, false positive is selected. The result for a class ¢
dominates the result for a class ¢’ if g(c) >= q(c’).

g(c) expresses how accurate a class ¢ can be classified. It also
penalises all-too tolerant segmentation. Classification results for
the classes are written to a label image in a subsequent manner.
Thereby, results might be overwritten, hence, the insertion or-
der affects the result. In detail, it allows better results to cor-
rect weaker results’ false negatives. Thus, good results improve
weaker results. All pixels, that have not been classified yet, adopt
the classification from the best single-resolution result.

4 RESULTS AND DISCUSSION

4.1 Input and Reference Data Set

As ground-truth data for evaluation of our results, area cover-
age information from the German ATKIS (see (AdF, 1997)) was
used. Coverage classes forest, settlement, cropland, and industry
were selected for verification, nearly covering the test scene com-
pletely. The scene is divided into 2606 regions (ATKIS objects)
belonging to either one of the four classes. This high quality data
was used to generate reference label images with 1m resolution.
ATKIS object information was kept to enable independent eval-
uation of each region. This includes determination of the ratio
of success, i.e. how many pixels of a region have been classified
correctly. Therefore, the contribution of the regions to the final re-
sult is independent of their size. This setup and evaluation meets
the requirements for texture classification used for production or
quality assessment of geo-spatial data.

In our setup we are classifying IKONOS satellite imagery pan-
sharpened to a resolution of Im. We are using the red, green
and near-infrared channels. The Gibbs-classificator is set to a
fixed region size of 32x 32 pixels. We allowed for five resolution
levels: 1, 2, 4, 8 and 16 meters. Our strategy was tested on a scene
showing the surroundings of Weiterstadt/Germany, covering an
area of about 5.7 km? (2340m x 2432m). The classifier was
trained with manually selected samples. They were taken from
a nearby area, however, they were not part of the scene used for
our classification tests.

4.2 Reclassification Results

From the sample described in section 4.1, the classificator gen-
erated the parameters for each resolution level as described in
section 2. The multi-resolution strategy was determined accord-
ing to the approach in section 3. Reclassification results for all
resolutions are shown in Table 1. The table has to be read for
each texture class and resolution level. On the diagonals, writ-
ten in bold, the true positives for each texture class can be found.
Other values in the same row are false negative, while other val-
ues in the same column (and for the same resolution) are false
positive values. The remaining values show the true negatives.
It can be noticed that results vary greatly between resolution lev-
els, and also within each level. The 8m level provides the best

Resolution | Classes [ Ind. [ Set. [ For. [ Cro ‘
Industry 425 | 214 42 | 31.8
Im Settlement | 18.8 | 51.4 | 143 | 154
Forest 0.1 1.4 | 96.5 2.0
Cropland 2.2 1.4 0.5 | 95.8
Industry 38.6 | 16.1 35 | 41.8
m Settlement 45 | 754 8.9 | 11.1
Forest 0.1 0.1 | 98.1 1.7
Cropland 0.4 0.5 0.3 | 98.8
Industry 494 | 14.1 1.7 | 34.8
4m Settlement 1.3 | 90.8 2.5 54
Forest 0.1 0.0 | 98.7 1.2
Cropland 0.3 0.7 0.0 | 99.0
Industry 76.0 | 10.1 23 | 11.7
8m Settlement 0.1 | 97.2 1.2 1.6
Forest 0.0 0.0 | 99.5 0.4
Cropland 0.0 0.2 0.5 | 99.3
Industry 16.8 | 56.2 8.2 | 18.8
16m Settlement 0.0 | 94.1 4.6 1.3
Forest 0.0 1.2 | 98.7 0.1
Cropland 0.0 6.4 23 | 913

Table 1: Reclassification results

classification result, as can be seen when summing up the diag-
onals for each level. When searching for the best level for each
texture class independently, again the 8m level is determined to
be superior for each class. Thus, the 8m resolution is chosen by
our algorithm. Since results within one resolution level do not
compete, the result is independent from the insertion order in this
case.

4.3 Scene Evaluation Results

To test our merging strategy, we compare the results to all pos-
sible combinations of levels and class order: Each class can ap-
pear in any of five resolution levels. Moreover the results can be
merged in any order. This leads to 54! = 15000 combinations.

In Figure 3 the quality of all possible combinations can be found.
To get a one-dimensional order for those combinations, we intro-
duce the term abstraction value: The resolutions (in meter) of a
combination are summed up, linearly weighted by the insertion
order. By doing this, it is taken into account that previous results
can be altered by following results. In short, a high abstraction
value denotes high influence from low resolution results. The
quality for a result is measured by averaging all true positive ra-
tios. This is feasible, because false positives, true negatives and
false negative ratios for a class are effecting the true positive val-
ues of other classes. For averaging, we use the median so that
outliers are not influencing the result too strongly. The diamond
shaped entry represents the combination chosen from our algo-
rithm. On first sight it becomes clear, that a multi-resolution ap-
proach has great impact on the performance of the system. The
quality between the possible combinations are varying heavily,
from 0.68 for the worst to 0.99 for the best result. The combina-
tion chosen by our algorithm performs nearly optimal.

Apart from this, some more results are emphasized in the graph.
If looking at Table 1 again, one can see, that the results for crop-
land hardly differ within resolutions of 2m, 4m, and 8m. The
same applies for forrest within the 4m, 8m, and 16m resolution.
Therefore, assigning these differences to noise, we evaluated ex-
amplary results to show the robustness of our approach. Using
the proposed merging strategy yields to high quality results as
well, which are depicted as cyan circles.

In Figure 4 the variance of the quality term within each com-
bination is shown. As can be seen, the variance is increasing
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Figure 3: Mean quality for each combination

monotonously with increasing abstraction value. This effect is
due to objects having complex shape or being very small. Such
objects suffer disadvantages in low resolutions. Furthermore, the
samples are roughly divided into two clusters. The upper cluster
is formed by combinations with high impact of the lowest resolu-
tion (16 meters). This resolution leads to unreliable results.

Now we want to take a closer look at the impact of resolution
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Figure 4: Variance of quality for each combination

and insertion order separately. In the left diagram in Figure 5
we show how much the quality varies when using a fixed com-
bination of resolutions but changing the classes for them. This
shows the importance of the order for inserting results of the dif-
ferent texture classes. In the right diagram, the order in which the
classes are used for the result is fix, but we vary the resolution
for each of the classes. For lack of a meaningful order for the
groups we limit this diagram to one dimension only. It appears,
resolution and insertion order are both affecting the performance
of the system in equal parts.

5 CONCLUSIONS

As shown in section 4, the use of several resolution levels is nec-
essary to obtain optimal results for scale invariant texture classifi-
cation. The relevance of different resolutions was depicted in the
previous section. Here, correctness of classification referring to
ground truth data of the whole scene ranges from 0.68 to 0.99.

The proven Markov/Gibbs model is still an adequate foundation
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Figure 5: Impact of resolution level

for todays classification tasks in remote sensing. A brute force
comparison of all configurations depending on merging order and
resolution level was evaluated. To stay flexible, a merging strat-
egy is needed, which only incorporates information known at the
time of learning. We presented a simple yet fast and reliable ap-
proach to combine the resolution levels. Since the training pro-
cess offers reclassification results as a rough quality measure, res-
olutions with a higher reclassification are prioritised in the merg-
ing process. The order is then given by a classification quality
(certainty), which penalises false negative results.

The experiments clearly show that classification is optimal within
our test set, while using four landcover classes. As shown, with
our strategy a correctness rate of 99% is achieved.
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