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Abstract

A new approach for robust estimation of camera ro-
tation, translation and focal length at high outlier rates
from feature correspondences between two perspec-
tive views is introduced. Many computer vision algorithms
use RANSAC based methods to achieve robustness. One dis-
advantage of these methods is the required computational ef-
fort at high outlier rates. The proposed approach is based on
a new evolutionary global optimization method called Re-
pulsive Particle Swarm Optimization (RPSO). It is shown
that the proposed approach requires less computational ef-
fort at high outlier rates compared to RANSAC based ro-
bust estimation.

1. Introduction

The estimation of camera parameters in structure-from-
motion algorithms is based on correspondences between fea-
ture points in multiple views. Finding correspondences is
error prone due to camera noise and similarities between de-
tected features. Furthermore only correspondences of
static features can be used for camera parameter estima-
tion. The generation of correspondences can yield a high
rate of inliers (correct correspondences) if the captured
scene contains many unique static features. Scenes contain-
ing human built structures like houses, streets or other ar-
tificial buildings are likely to yield high inlier rates. But
there are also scenes which yield low inlier rates (high out-
lier rates), e.g. scenes with quasi periodic structures or
scenes with many moving objects.
For robust estimation outliers have to be detected and elim-
inated. Many conventional approaches for outlier detection
and elimination are based on the RANSAC [2] algo-
rithm. There have been several enhancements and modifi-
cations of RANSAC [3, 4, 5, 6, 7, 8] which are all based
on the common random sampling scheme. One disadvan-

tage of random sampling based algorithms is the computa-
tional expense at high outlier rates because the number of it-
erations required increases very rapidly with the rate of
outliers. This increase makes the use of RANSAC unpracti-
cal at high outlier rates.

This paper presents an algorithm for robust estima-
tion of camera rotation, translation and focal length (at
given intrinsic camera parameters) from a given corre-
spondence set which may have a high outlier rate. A new
evolutionary global optimization method, called Repul-
sive Particle Swarm Optimization (RPSO) is introduced.
By control of a cost function, RPSO finds the global opti-
mum which is consistent with the estimation of the unknown
parameters and so enables the distinction of the correspon-
dences in inliers and outliers. Compared to conventional
approaches the new algorithm requires less computa-
tional expense at high outlier rates.

In the following section the conventional estimation strat-
egy is briefly presented. In section 3 the computational ex-
pense of the RANSAC based outlier detection is discussed.
Section 4 presents the new approach for robust estimation of
camera rotation, translation and focal length. In section 5 re-
sults of the experiments are shown and in the last section the
paper is concluded.

2. Conventional Estimation Strategy

Most approaches for robust estimation of camera rotation
and translation parameters at given intrinsic camera parame-
ters are structured as follows:

1. Detect feature points in frame 1:

p(i) :=
(

x(i) y(i)

)>
and in frame 2:

p′(j) :=
(

x′(j) y′(j)

)>
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Figure 1. Feature pointsp, p′ by projection ofP into
the camera plane

as shown in Fig. 1

2. Determine the correspondence setC by finding the cor-
respondingp′ for eachp

3. Apply RANSAC to detect outliers and determine an ini-
tial fundamental matrixF [11] using the 7-point algo-
rithm [12]. The F matrix can be written as:

F := K
′−1TRK−1 (1)

with K andK
′

describing camera intrinsics [10]:

K :=


f
px

s cx

0 f
py

cy

0 0 1

 ,K′ :=


f ′

px
s cx

0 f ′

py
cy

0 0 1

 (2)

wheref is the focal length of the camera generating
frame 1,f ′ is the focal length of the camera generat-
ing frame 2,s is the skew of a pixel,cx, cy are coordi-
nates of the principal point andpx, py describe the pixel
size. Exceptf ′, all intrinsic parameters are assumed to
be known.
R is the rotation matrix:

R :=

 sϕsϑsρ + cϕcρ sϕsϑcρ − cϕsρ sϕcϑ

cϑsρ cϑcρ −sϑ

cϕsϑsρ − sϕcρ cϕsϑcρ + sϕsρ cϕcϑ


(3)

with ϕ, ϑ andρ rotation angles and

sϕ := sin(ϕ), sϑ := sin(ϑ) sρ := sin(ρ)
cϕ := cos(ϕ), cϑ := cos(ϑ) cρ := cos(ρ). (4)

The components of camera translation areT1, T2, T3

andT is defined as:

T :=

 0 T3 −T2

−T3 0 T1

T2 −T1 0

 . (5)

The magnitude of the camera translation can not be de-
termined by the estimation soT can be parameterized
by 2 values. With 3 parameters for the rotation, 2 pa-
rameters for the translation and one parameter for the

focal length,F is entirely determined by 6 parameters.
F fulfills the epipolar condition [10]:

p̄
′>
homF p̄hom = 0 (6)

where

p̄′hom :=

 x̄′

ȳ′

1

 and p̄hom :=

 x̄
ȳ
1

 (7)

are noise free homogeneous feature points

4. Extract initial translation, rotation and focal length from
the F matrix [10]

3. Computational Expense of RANSAC

The algorithm for outlier detection based on RANSAC
comprises 4 steps :

1. Randomly choose 7 correspondences out ofC

2. Calculate potential F matrix

3. Determine the inlier rate induced by the current F ma-
trix

4. Go to 1 and repeat until an appropriate inlier rate is
achieved

For a given correspondence of detected feature points
p,p′ and a given F matrix the decision whether the corre-
spondence is an inlier or an outlier is made by specifying a
thresholdτ for the distance between theepipolar line[11]

l> := p
′>
homF (8)

and the appropriate pointp:

distance(l>,p)
?
< τ (9)

If the distance is below the specified threshold the correspon-
dence is decided to be an inlier, otherwise it is marked as
an outlier. A reasonable value for the threshold depends on
the noise of the feature point coordinates. Assuming that the
noise is Gaussian with zero mean and standard deviationσ a
reasonable value forτ is τ ∼ 10σ.

RANSAC is an iterative algorithm and the number of iter-
ations required to find a correct sample of 7 correspondences
out of C depends on the number of correspondencesN and
on the number of inliersk. The outlier rate is defined as:

β :=
N − k

N
(10)

In the following the probability for a successful search after
r iterations is determined.
For a given correspondence set the probability of picking up
a sample with 7 inliers is:

P7 :=
k

N
· k − 1
N − 1

· · · k − 6
N − 6

(11)



The probability for at leastoneof the 7 randomly chosen cor-
respondences being an outlier is (resulting in a wrong F ma-
trix) :

Pfail := 1− P7 (12)

If the selection process is repeatedr - times the probability
thateachtrial fails is:

Pfail(r) := (1− P7)r (13)

So the probabilityPsucc(r) for choosing a sample of 7 inliers
in r iterations is:

Psucc(r) := 1− Pfail(r) = 1− (1− P7)r (14)

In this paperPsucc(r) is used as a measure for the robustness
of the estimation. Fig. 2 shows probabilityPsucc(r) for N =
400 and various outlier rates.
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Figure 2. Probability for a successful search with
RANSAC

The computational expense of RANSAC is defined by the
number of iterationsr required for a given robustnessPg. To
derive the number of required iterations,P7 is approximated
by

P̂7 := (
k

N
)7 (15)

andPfail(r) is approximated by

P̂fail(r) := (1− P̂7)r (16)

With P̂7 > P7 follows:

P̂fail(r) < Pfail(r)
⇒ P̂succ(r) := 1− P̂fail(r) > Psucc(r) (17)

From (17) and

P̂succ(r)
!= Pg (18)

follows:

r ≈ ln(1− Pg)
ln(1− (1− N−k

N )7)

≈ ln(1− Pg)
ln(1− (1− β)7)

(19)

Fig. 3 shows number of iterationsr versus outlier rateβ. The
number of iterations required exceeds an exponential growth
with increasing outlier rate.
In the next section it is shown that the new proposed algo-
rithm for estimation of camera rotation, translation and focal
length requires less iterations and in consequence less com-
putational expense at high outlier rates.
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Figure 3. Iterationsr required by RANSAC forPg =
0.99

4. Estimation of Rotation, Translation and Fo-
cal Length by Global Optimization

The proposed new approach searches for the optimal F
matrix given a correspondence setC with outliers by con-
trol of a cost function. The F matrix is constructed from 6
estimated parameters. Rotation is parameterized by 3 param-
eters:

ϕ, ϑ, ρ ∈ [−0.2 rad, 0.2 rad] (20)

The translation is parameterized by 2 parameters:

ζ, η ∈ [0, π]
T1 = sin(ζ) cos(η)
T2 = sin(ζ) sin(η)
T3 = cos(ζ) (21)

where ζ and η parameterize the orientation of a vec-
tor in 3D-space (spherical coordinates). For the genera-
tion of frame 1 it is assumed, without loss of general-
ity, that the focal lengthf is set to 1 soK is completely



known. The focal lengthf ′ of the camera which gener-
ates frame 2 is unknown and must be estimated. With an es-
timatedf̂ ′, K′ is completely determined so the F matrix is
constructed by equation (1). The search space is 6 dimen-
sional and the task of the optimization is to find the estimate
F̂(ϕ̂, ϑ̂, ρ̂, ζ̂, η̂, f̂ ′) (of the true F̄(ϕ̄, ϑ̄, ρ̄, ζ̄, η̄, f̄ ′)) yield-
ing a globally optimal cost.
This problem can be solved by global optimization (GO).
The GO technique proposed is a new approach calledRe-
pulsive Particle Swarm Optimization(RPSO) which is
a modified Particle Swarm Optimization(PSO) [13, 14]
and belongs to the class of stochastic global optimiz-
ers.
The search method of the new algorithm is fundamen-
tally different compared to the RANSAC algorithm. The
RANSAC algorithm constructs solution candidates by ran-
domly chosen samples whereas the GO-based algorithm
constructs solution candidates by interactions within a pop-
ulation of different solution candidates and thus makes use
of more information (e.g. by sharing ’experiences’ within
the population). This is one of the reasons for this new ap-
proach outperforming RANSAC at high outlier rates.

4.1. Cost Function

The detection of feature points is error prone. It is as-
sumed that the error distribution of each feature point coor-
dinate is Gaussian with zero mean and uniform standard de-
viation σ for inliers [3]. The probability density function of
the noise perturbated inlier is:

p
(ML)
inlier,(i) := (

1√
2πσ

)4 exp(−
d2
(i) + d

′2
(i)

2σ2
) (22)

with (as shown in Fig. 4)

F̄ : true F matrix
(p(i),p′(i)) : detected correspondence
(p̄(i), p̄′(i)) : true correspondence

d(i) := distance(p̄(i),p(i))
d′(i) := distance(p̄′(i),p

′
(i)) (23)
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Figure 4. Example for feature points and detected
correspondences (inlier and outlier)
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Figure 5. Epipolar lines and corresponding feature
points (inlier and outlier)

Assuming a uniform probability distribution for the error
of point coordinates of outliers the probability distribution of
the error of an outlier is (assuming a mismatch in frame 2):

p
(ML)
outlier,(i) := (

1√
2πσ

)2 exp(−
d2
(i)

2σ2
)

1
v2

(24)

wherev is the width (and height) of the window within the
outlier may occur. For a correspondence setC with an out-
lier rate ofβ the probability density function for a correspon-
dence is:

p
(ML)
mix,(i) := (1− β) p

(ML)
inlier,(i) + β p

(ML)
outlier,(i) (25)

p
(ML)
mix,(i) is the probability for the error of a correspondence

picked up from a correspondence set with an outlier rate of
β. The error model for the correspondence setC has the fol-
lowing probability density distribution:

p
(ML)
mix,C(C|F̄) :=

N∏
i=1

p
(ML)
mix,(i) (26)

SinceF̄ (6 parameters) and (p̄(i), p̄′(i)) (4N parameters) are
unknown this results in an optimization problem with4N +6
parameters to be estimated. It is needed to simplify the prob-
lem (at the expense of violating the ML-property) to enable
a computationally efficient global search.
Therefore, it is assumed that the detected feature points in

frame 1 are noise free. In result, the epipolar linesl̄′(i) in
frame 2 obtained by the true F matrix andp̄(i)

l̄(i) := F̄p̄hom(i) (27)

are error free (Fig. 5). So the considered distances are:

d(i) = 0 and
d′(i)→d′epi,(i)(F̂) := distance(F̂phom(i),p′(i)) (28)

with F̂ any estimated F matrix. There are 6 free parameters
remaining : 3 rotation parameters, 2 translation parameters
and 1 parameter for the focal length. The simplified error
model has the following probability density distribution for
a correspondence:

pmix,(i) :=
(1− β)
2πσ2

exp(−
d

′2
epi,(i)(F̂)

2σ2
) +

β

v2
(29)



The simplified error model for the correspondence set has the
following probability density distribution:

pmix,C(C|F̂) :=
N∏

i=1

pmix,(i) (30)

Instead of maximizingpmix,C(C|F̂) the negative logarith-
mic likelihood−L can be minimized:

−L(C|F̂) := − ln(pmix,C(C|F̂)) (31)

In this approach following cost function has to be minimized
by the global optimizer:

ξ(C|F̂) := −L(C|F̂)

= −
N∑

i=1

ln
[
(1− β)
2πσ2

cf

exp(−
d

′2
epi,(i)(F̂)

2σ2
cf

) +
β

v2

]
(32)

with σcf the specified variance.

4.2. Repulsive Particle Swarm Optimization

The cost function described isξ : U ⊂ R6 → R. Un-
fortunately, this mapping has many local optima making it
hard to find the global optimum and so the optimal F ma-
trix. One possibility is to use population based evolution-
ary global optimization methods to solve this problem. One
method, the particle swarm optimization (PSO) was chosen
due to its high convergence speed but it proved to be not suffi-
ciently robust for this problem. PSO rather got stuck in local
optima than to find the desired global optimum. Therefore,
a modified PSO which is called repulsive particle swarm op-
timization (RPSO) has been developed. In RPSO, there is a
populationΨ of solution candidates, calledparticles, hav-
ing positionsx and velocitiesv in the search space. In this
case the positionx(r) of a particle at iteration stepr is deter-
mined by 6 parameters:

x(r) := (ϕ(r), ϑ(r), ρ(r), ζ(r), η(r), f ′(r))>

The velocityv(r) of a particle determines the next position
x(r+1) after an iteration step:

v(r) := (∆ϕ(r),∆ϑ(r),∆ρ(r),∆ζ(r),∆η(r),∆f ′(r))>

x(r+1) :=x(r) + v(r) (33)

Each particle knows its best positionx̂ it has achieved so far
measured by the cost function. The main difference between
PSO and RPSO results from the different definition for the
velocity of a particle. In PSO, the equation used to calculate
the velocity of a particle for the next iteration is:

v(r+1) = ω v(r)

+ aPSO χ
(r)
1 (−x(r) + x̂(r))

+ bPSO χ
(r)
2 (−x(r) + x̂(r)

Ψ ) (34)

In contrast, the equation for the velocityv(r+1) of a particle
in RPSO for the next iteration is:

v(r+1) = ω v(r)

+ aRPSO χ
(r)
1 (−x(r) + x̂(r))

+ bRPSO χ
(r)
2 ω(−x(r) + ŷ(r))

+ cRPSO χ
(r)
3 ω z(r) (35)

with

• χ
(r)
1 , χ

(r)
2 , χ

(r)
3 : random numbers∈ [0, 1]

• ω : inertia weight∈ [0.01, 0.7]

• x̂(r) : best position of a particle

• ŷ(r) : best position of a randomly chosen other particle
from Ψ

• z(r) : a random velocity vector

• x̂(r)
Ψ the globally best particle within the population

• aPSO = bPSO = 2

• aRPSO = 1.5, bRPSO = −1.5, cRPSO = 0.5

The term with theaRPSO-scalar on the right side of (35)
leads to a motion of the particle towards its best position.
The term with thebRPSO-scalar leads to a repulsion between
the particle and the best position of a randomly chosen other
particle in order to explore new areas in the search space and
to prevent the population to get stuck in a local optimum.
The term with thecRPSO-scalar generates noise in the veloc-
ity of a particle to enhance the exploration to new areas in the
search space. The components of the velocityv and the com-
ponents of the positionx are constrained to lie within the al-
lowed bounds of corresponding variables. In case of a bound
infringement the new value for a component of particle posi-
tion is calculated by a ’reflection’ : e.g.

x1 = 1.2 /∈ [0, 1] ⇒ x1 → 1− (1.2− 1) = 0.8 (36)

and in case of a bound infringement the new value for a com-
ponent of the velocity is calcualted by a ’cut off’ : e.g.

v1 = 1.2 /∈ [0, 1] ⇒ v1 → 1. (37)

RPSO enables the use of more information compared to
PSO due to repulsion between particles. In average this leads
to a more balanced occupation of the search space through
the population where each particle tends to have its own
region. The search space is then clustered more homoge-
neously.
The inertia weightω decreases in steps of0.05 from 0.7 to
0.01 when no progress at all is encountered for∆rω itera-
tion steps. The search is aborted when a given inlier rate is
achieved or a maximum number of iterations is reached.



5. Experimental Results

This approach is tested on synthetic data and on real im-
age pairs.

5.1. Synthetic Data Tests

A virtual camera with rotation angles restricted to± 0.2
rad and with a maximum focal length variation of 10 % be-
tween two following frames is used.
At first a 3D point cloud is randomly constructed. The vir-
tual camera determines the first projection of the 3D points
into the camera plane to generate frame 1. After trans-
lating, rotating and changing the focal length of the vir-
tual camera frame 2 is generated. The corresponding feature
points are determined. A Gaussian noise is added to the fea-
ture point coordinates to simulate real world conditions. To
simulate outliers the coordinates of some of the correspon-
dences are randomly changed. WithN = 400 and varying
outlier rates the required number of iterations for a 99% suc-
cessful search is experimentally determined.
The coordinates of the feature points lie within
[−0.5u, 0.5u] where u is any length unit. The true vari-
ance σ̄2 of the Gaussian noise is̄σ2 = 5 · 10−7u2. As-
suming that a real camera has 720x576 pixel resolution
this is equivalent to a Gaussian error with a standard devia-
tion of σ ∼ 0.4 pel.
It proves that the varianceσ2

cf specified in the cost func-
tion may be greater than the true varianceσ̄2 without loosing
significant accuracy of the estimated parameters. The rea-
son for specifying a greater variance in the cost function is
the resulting search space which enables a faster global con-
vergence. Tab. 1 shows the parameters of the RPSO algo-
rithm depending on the outlier rate.

β σ2
cf [u2] ∆rω size ofΨ τ [u]

0.5 11 · 10−6 25 10 7 · 10−3

0.6 9 · 10−6 35 10 7 · 10−3

0.7 7 · 10−6 40 10 7 · 10−3

0.8 5 · 10−6 55 10 7 · 10−3

0.9 3 · 10−6 60 25 5 · 10−3

Table 1. Synthetic data tests : Setup of RPSO param-
eters

Fig. 6 shows the results of the synthetic data tests where
the required number of iterations is plotted.

Compared to RANSAC based estimation the new ap-
proach requires less iterations at outlier rates above 70%. At

80% outlier rate the required number of iterations is reduced
by a factor of 17. At 90% it is reduced by a factor of 800.
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Figure 6. Mean iterations required for 99% success-
ful search : RANSAC (theoretically derived) vs. RPSO
(synthetic data tests)

5.2. Real Data Tests

The proposed appraoch was tested on two outdoor image
pairs. Fig. 7 shows the first image pair named ’leaves’ (A).
594 correspondences were detected where RANSAC pro-
duced an outlier rate ofβ = 0.78. In these images the leaves
are moving and make it hard for the correspondence genera-
tion step to produce good results.
Fig. 8 shows the second image pair named ’berries’ (B)
having a static building in the background and a shrub
in the foreground. 710 correspondences were detected and
RANSAC produced an outlier rate ofβ = 0.84. This im-
age pair was even harder for the correspondence generation
step due to many moving objects in the foreground.
Both image pairs were processed 800 times. Though RPSO
was set up to stop at given inlier rate1−β, the algorithm of-
ten stopped by reaching a higher inlier rate. Tab. 2 shows the
setup parameters of RPSO. In tab. 3 the results of the new ap-
proach applied on the two image pairs are given where

• βRPSO is the mean detected outlier rate

• rRPSO is the mean required number of iterations

• Pg is the confidence rate and

• rRANSAC is the theoretically derived mean required
number of iterations by RANSAC.

In both cases, the RPSO algorithm is superior to the
RANSAC algorithm and the required number of itera-
tions is consistent with the synthetic data experiments.
In order to compare the runtime efficiency the timet needed
for 10000 iterations was determined. In tab. 4 the measured



time in seconds for both image pairs and at various num-
bers of detected correspondences is given. It shows that the
runtime efficiency of RPSO is superior to RANSAC by a fac-
tor of 8.

Figure 7. Detected inliers (yellow) and outliers (red)
from image pair ’leaves’. Top left : RANSAC in-
liers+outliers, top right : RPSO inliers+outliers, bot-
tom left : RANSAC inliers, bottom right : RPSO inliers

Figure 8. Detected inliers (yellow) and outliers (red)
from image pair ’berries’. Top left : RANSAC in-
liers+outliers, top right : RPSO inliers+outliers, bot-
tom left : RANSAC inliers, bottom right : RPSO inliers

β σ2
cf [pel2] ∆rω size ofΨ τ [pel]

A 0.78 0.9 65 10 0.8
B 0.84 0.7 40 25 0.8

Table 2. Real data tests: Setup of RPSO Parameters

βRPSO rRPSO Pg rRANSAC

A 0.77 2.89 · 104 0.9963 2.72 · 105

B 0.83 6.87 · 104 0.9963 2.80 · 106

Table 3. Real data test results: Mean required num-
ber of iterations and corresponding confidence rate

A (leaves) B (berries)
N 694 1193 710 1379

tRANSAC [s] 82 160 94 183
tRPSO [s] 10 20 12 23

Table 4. Real data tests: Runtime efficiency measure-
ments

6. Conclusions

A technique for robust estimation of camera rotation,
translation and focal length at high outlier rates is presented.
The global optimizer in combination with the specified cost
function requires less computational expense compared to
the RANSAC algorithm. When the runtime efficiency is
taken into account, the proposed estimator is superior at out-
lier rates of 59% and above. Though the proposed technique
requires more iterations than the RANSAC algorithm at out-
lier rates below 70%, the upper bound for the required com-
putational effort of the estimation of camera rotation, transla-
tion and focal length is significantly decreased. The real time
estimation at high outlier rates can be facilitated. Another ad-
vantage of the proposed estimator is that it can be configured
to estimate any subset of parameters, e.g. only rotation and
one direction translation, so it is possible to benefit from any
constraints in the camera parameters.
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