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Abstract tage of random sampling based algorithms is the computa-
tional expense at high outlier rates because the number of it-
A new approach for robust estimation of camera ro€rations required increases very rapidly with the rate of
tation, translation and focal length at high outlier ratesoutliers. This increase makes the use of RANSAC unpracti-
from feature correspondences between two perspeeal at high outlier rates.
tive views is introduced. Many computer vision algorithms
use RANSAC based methods to achieve robustness. One disThis paper presents an algorithm for robust estima-
advantage of these methods is the required computational &en of camera rotation, translation and focal length (at
fort at high outlier rates. The proposed approach is based ogiven intrinsic camera parameters) from a given corre-
a new evolutionary global optimization method called Respondence set which may have a high outlier rate. A new
pulsive Particle Swarm Optimization (RPSO). It is showvolutionary global optimization method, called Repul-
that the proposed approach requires less computational e$ive Particle Swarm Optimization (RPSO) is introduced.
fort at high outlier rates compared to RANSAC based roBy control of a cost function, RPSO finds the global opti-
bust estimation. mum which is consistent with the estimation of the unknown
parameters and so enables the distinction of the correspon-
dences in inliers and outliers. Compared to conventional
approaches the new algorithm requires less computa-
1. Introduction tional expense at high outlier rates.

The estimation of camera parameters in structure-from- | the following section the conventional estimation strat-
motion algorithms is based on correspondences between f@@-y is briefly presented. In section 3 the computational ex-
ture points in multiple views. Finding correspondences igznse of the RANSAC based outlier detection is discussed.
error prone due to camera noise and similarities between ction 4 presents the new approach for robust estimation of
tected features. Furthermore only correspondences @mera rotation, translation and focal length. In section 5 re-

static features can be used for camera parameter estindgts of the experiments are shown and in the last section the
tion. The generation of correspondences can yield a higfhper is concluded.

rate of inliers (correct correspondences) if the captured
scene contains many unique static features. Scenes contaz'n—
ing human built structures like houses, streets or other ar-

tificial buildings are likely to yield high inlier rates. But  \jost approaches for robust estimation of camera rotation

there are also scenes which yield low inlier rates (high oulng translation parameters at given intrinsic camera parame-
lier rates), e.g. scenes with quasi periodic structures @&s are structured as follows:

scenes with many moving objects. o

For robust estimation outliers have to be detected and elim-L- Detect feature points in frame 1:
inated. Many conventional approaches for outlier detection T
and elimination are based on the RANSAC [2] algo- Po) = (26 Yo )
rithm. There have been several enhancements and modifi- and in frame 2:

cations of RANSAC [3, 4, 5, 6, 7, 8] which are all based T
on the common random sampling scheme. One disadvan- p/(j) = ( 'r/(j) ij) )

Conventional Estimation Strategy



focal length F is entirely determined by 6 parameters.

P
F fulfills the epipolar condition [10]:
p;l—ng Phom =0 (6)
Camera 1 where
&‘@\ = -
Q& X X
Camera 2 pilOIIl — g/ and 13}10111 — g (7)
1 1
Figure 1. Feature pointp, p’ by projection ofP into are noise free homogeneous feature points
the camera plane 4. Extractinitial translation, rotation and focal length from
the F matrix [10]
as shown in Fig. 1 3. Computational Expense of RANSAC

2. Determine the correspondence 6y finding the cor-

responding’ for eachp The algorithm for outlier detection based on RANSAC

. ) .. comprises 4 steps :
3. Apply RANSAC to detect outliers and determine an ini-

tial fundamental matris¥ [11] using the 7-point algo- 1. Randomly choose 7 correspondences ouf' of

rithm [12]. The F matrix can be written as: 2. Calculate potential F matrix
F—-K 'TRK! 1) 3. Determine the inlier rate induced by the current F ma-
trix

with K andK describing camera intrinsics [10]: 4. Go to 1 and repeat until an appropriate inlier rate is
f £ achieved
E S Cyp pj S Cg

K=|0 L ¢y K=109 L ¢y (2) For a given correspondence of detected feature points
Py

Py

, . : -
00 1 00 1 p.p’ and a given F matrix the decision whether the corre-

spondence is an inlier or an outlier is made by specifying a
where f is the focal length of the camera generatinghresholdr for the distance between tlepipolar line[11]
frame 1, f’ is the focal length of the camera generat- T T
ing frame 2,s is the skew of a pixel¢,, ¢, are coordi- I = ppomF ®)
nates of the principal point ang, p,, describe the pixel and the appropriate poipt
size. Exceptf’, all intrinsic parameters are assumed to
be known. distance(1", p) ; T 9)

R is the rotation matrix:
If the distance is below the specified threshold the correspon-

R SpS9Sp T CoCp  SpS9Cp = CoSp  SpCo dence is decided to be an inlier, otherwise it is marked as

= CoSp CoCp —59 an outlier. A reasonable value for the threshold depends on
Cp89Sp — SuCp  CpSYCp + S8 C,Cy : : : :

povCp  Cetp TePutp T 2eop T the noise of the feature point coordinates. Assuming that the

(3) noise is Gaussian with zero mean and standard deviateon
reasonable value faris 7 ~ 100.

5, 1= sin(p), sy := sin(9) s, := sin(p) ~RANSAC is an i_terative algorithm and the number of iter-

ations required to find a correct sample of 7 correspondences

out of C depends on the number of correspondengesnd

The components of camera translation @re 7>, 73 on the number of inliers. The outlier rate is defined as:

andT is defined as: N—k

0 T =T & N

T:=|-13 0 . ®)  Inthe following the probability for a successful search after
, -7 O r iterations is determined.

The magnitude of the camera translation can not be dEOr @ given correspondence set the probability of picking up
termined by the estimation <B can be parameterized @ Sample with 7 inliers is:

by 2 values. With 3 parameters for the rotation, 2 pa- E k-1 kE—6
rameters for the translation and one parameter for the b= N1 N_—6 (11)

with ¢, 1 andp rotation angles and

cp 1= cos(), ¢y :=cos(V) ¢, :=cos(p). (4)

(10)




The probability for at leagineof the 7 randomly chosen cor- follows:
respondences being an outlier is (resulting in a wrong F ma-

trix) : - — ln(11* Ijvgzk .
Py :=1- P (12) n(lnzl( ;)T) )
~ g
If the selection process is repeated times the probability T o In(1-(1-p)7) (19)

thateachtrial fails is:
Fig. 3 shows number of iteratiomssersus outlier ratg. The

Peyn(r) = (1 = P)" (13) number of iterations required exceeds an exponential growth
with increasing outlier rate.
So the probabilitys,..(r) for choosing a sample of 7 inliers |n the next section it is shown that the new proposed algo-
in r iterations is: rithm for estimation of camera rotation, translation and focal
length requires less iterations and in consequence less com-
Poce(r) :=1 = Pran(r) =1 - (1 - P7)" (14) putational expense at high outlier rates.

In this paperP,,..(r) is used as a measure for the robustness

. . . . 8
of the estimation. Fig. 2 shows probabiliB,.(r) for N = T ]
400 and various outlier rates. 107 ¢ 3
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Figure 2. Probability for a successful search with

RANSAC ) ) ) .
4. Estimation of Rotation, Translation and Fo-

cal Length by Global Optimization

The computational expense of RANSAC is defined by the  The proposed new approach searches for the optimal F
number of iterations required for a given robustne#y. To  maitrix given a correspondence ggtwith outliers by con-
derive the number of required iteratiorf, is approximated trol of a cost function. The F matrix is constructed from 6

by estimated parameters. Rotation is parameterized by 3 param-
. k.. eters:
Pr = (ﬁ) (15) 0,9, p € [—0.2rad, 0.2 rad] (20)
and Py, () is approximated by The translation is parameterized by 2 parameters:
Pra(r) == (1 P)" (16) ¢Gn € 0,7
o T, = sin({) cos(n)
With P; > P; follows: T, = sin(¢) sin(n)
T3 = cos(¢) (21)

X Pran(r) < Pran(r)
= Puuce(r) == 1= Prai(r) > Pouce(r) (17)  where ¢ and n parameterize the orientation of a vec-
tor in 3D-space (spherical coordinates). For the genera-
R ' tion of frame 1 it is assumed, without loss of general-
Piuee(r) = Py (18) ity, that the focal lengthf is set to 1 saK is completely

From (17) and



known. The focal lengthf’ of the camera which gener- e

ates frame 2 is unknown and must be estimated. With an e&==1 e T Frame2 o gyipolar line
; £ 2 ; i o el
timated f/, K’ is completely determined so the F matrix is|  p, etinolarline
constructed by equation (1). The search space is 6 dimen- <1l
sional and the task of the optimization is to find the estimate 1 /
F((}A9>'l9aﬁ7€aﬁ7fl) (Of the trueF(¢>197ﬁ7C7ﬁvf/>) yleld' P(2) ° f)éz)

ing a globally optimal cost.
This problem can be solved by global optimization (GO).
The GO technique proposed is a hew approach célled
pulsive Particle Swarm OptimizatiofRPSO) which is
a modified Particle Swarm OptimizatioPSO) [13, 14]

and belongs to the class of stochastic global optimiz- ) _ L
ers. Assuming a uniform probability distribution for the error

The search method of the new algorithm is fundamerff point coordinates of outliers the probability distribution of

tally different compared to the RANSAC algorithm. Thethe error of an outlier is (assuming a mismatch in frame 2):
RANSAC algorithm constructs solution candidates by ran- 1 dz
domly chosen samples whereas the GO-based algorithm pf},ﬁlr,(i) = ( )? GXP(—2(2)
constructs solution candidates by interactions within a pop- 2mo 7
ulation of different solution candidates and thus makes ugeherev is the width (and height) of the window within the
of more information (e.g. by sharing ’experiences’ withinoutlier may occur. For a correspondence Getith an out-
the population). This is one of the reasons for this new agier rate of3 the probability density function for a correspon-
proach outperforming RANSAC at high outlier rates. dence is:

ML ML ML
pl(nix,zi) = (1 - ﬁ) pi(nlicg,(i) + ﬂ pt()utli)cr,(i) (25)

Figure 5. Epipolar lines and corresponding feature
points (inlier and outlier)

SN2

4.1. Cost Function

(ML) s the probability for the error of a correspondence

: ; : ; pmix,(i
The detection of feature points is error prone. It is aspicke(} up from a correspondence set with an outlier rate of
sumed that the error distribution of each feature point cool; Tha error model for the correspondenceGétas the fol-
dinate is Gaussian with zero mean and uniform standard Si/ving probability density distribution:

viation o for inliers [3]. The probability density function of
N

the noise perturbated inlier is: _
Che(CIF) =TT Pty (26)
2 2 i— ’
p.(M.L) L= ! )4 exp(—id(i) +d(i)) (22) — '
inlier, (4) 2o 202 SinceF (6 parameters) and(;), p(i)) (4N parameters) are

) o unknown this results in an optimization problem witN +6
with (as shown in Fig. 4) parameters to be estimated. It is needed to simplify the prob-
lem (at the expense of violating the ML-property) to enable
a computationally efficient global search.
Therefore, it is assumed that the detected feature points in

F : true F matrix
(p(i),p’(i)) : detected correspondence
)

N =Y . ) . . ey .
(B(i), () * true Correb?ondence frame 1 are noise free. In result, the epipolar lidgs in
dgy = distance(P(), P(i)) frame 2 obtained by the true F matrix apg,
dy;y = distance(p(;), P(;)) (23) _ _
L(iy := FPhom(s) (27)
are error free (Fig. 5). So the considered distances are:
Fm'f)m e | (1) dgy=0 and . .
P B di —dy; iy (F) = distance(Fphom(i), P(;y)  (28)
B2 _ ) with any estimated F matrix. There are 6 free parameters
R e = ply remaining : 3 rotation parameters, 2 translation parameters

and 1 parameter for the focal length. The simplified error
model has the following probability density distribution for
a correspondence:

/2 el
(1-5) dei iy (F) 3
Pmix,(i) = 55" GXP(—ZT) T2

Figure 4. Example for feature points and detected
correspondences (inlier and outlier)




The simplified error model for the correspondence set has thecontrast, the equation for the velocity"+1) of a particle

following probability density distribution: in RPSO for the next iteration is:
S w v
Pmix,C C|F Hpmlx (i) (30) + arpso X(l ") ( X( r) +)"(( ))
) + bRPSOX(z) w(—x" +30)
Instead of maximizingmi.c(C|F) the negative logarith- + crpso X5 wz™ (35)
mic likelihood — L can be minimized:
. . with
—L(C|F) := —In(pmix.c(C|F (32)
(CIF) (P o (CIE) X(T), 57, x5 random numbers [0, 1]

In this approach fol!owing cost function has to be minimized e w : inertia weighte [0.01, 0.7]
by the global optimizer:

X A . x(T) best position of a particle

¢(C1F) := _L(C|F) e y(") : best position of a randomly chosen other particle

N 2 n
1 - de l Z
— _Zln ( Qﬁ) exp( p1, )( )) + ﬁ (32) from ¥

; 2w, 202 02

i= cf ef e z(") : a random velocity vector
with o the specified variance. o %) the globally best particle within the population
4.2. Repulsive Particle Swarm Optimization * apso = bpso =2

e arpso = 1.9, brpso = —1.5, crpso = 0.5

The cost function described §: U ¢ RS — R. Un-
fortunately, this mapping has many local optima making it
hard to find the global optimum and so the optimal F malhe term with thearpso-scalar on the right side of (35)
trix. One possibility is to use population based evolutionleads to a motion of the particle towards its best position.
ary global optimization methods to solve this problem. Ondhe term with therpso-scalar leads to a repulsion between
method, the particle swarm optimization (PSO) was chosédhRe particle and the best position of a randomly chosen other
due to its high convergence speed but it proved to be not sufiarticle in order to explore new areas in the search space and
ciently robust for this problem. PSO rather got stuck in locallo prevent the population to get stuck in a local optimum.
optima than to find the desired global optimum. Thereforel he term with the:rpso-scalar generates noise in the veloc-
a modified PSO which is called repulsive particle swarm opty of a particle to enhance the exploration to new areas in the
timization (RPSO) has been developed. In RPSO, there issgarch space. The components of the velocéyd the com-
population¥ of solution candidates, calleparticles hav- Ponents of the positior are constrained to lie within the al-
ing positionsx and velocitiesv in the search space. In this lowed bounds of corresponding variables. In case of a bound
case the positior(”) of a particle at iteration stepis deter-  infringement the new value for a component of particle posi-

mined by 6 parameters: tion is calculated by a reflection’ : e.g.
X(T') = (SO(T)7 19(7')7p(7~)7 <(7~)7,'7(7-)7 f/('p))T Ty = 1.2 ¢ [07 1] = x] — 1 — (12 — 1) =0.8 (36)
The velocityv(") of a particle determines the next positionand in case of a bound infringement the new value for a com-
x("+1) after an iteration step: ponent of the velocity is calcualted by a 'cut off’ : e.qg.
v = (A AYT Ap™ ACT AR AFYT v =12¢1[0,1] = v; — L (37)
XD .= () | (™) (33)

RPSO enables the use of more information compared to
Each particle knows its best positigént has achieved so far PSO due to repulsion between patrticles. In average this leads
measured by the cost function. The main difference betweem a more balanced occupation of the search space through
PSO and RPSO results from the different definition for théhe population where each particle tends to have its own
velocity of a particle. In PSO, the equation used to calculategion. The search space is then clustered more homoge-
the velocity of a particle for the next iteration is: neously.
The inertia weightv decreases in steps 6f05 from 0.7 to
r) ) L o(r) Q.Ol when no progress at all is encountere_d ztoru_J iFera— _
+ apsoxy’ (x4 %) tion steps. The search is aborted when a given inlier rate is
+ bpso X( ") (—x) 4 Xg)) (34) achieved or a maximum number of iterations is reached.

) —



5. Experimental Results 80% outlier rate the required number of iterations is reduced
by a factor of 17. At 90% it is reduced by a factor of 800.
This approach is tested on synthetic data and on real im-

age pairs. 10° ‘ ‘ ,
e RANSAC o
107 & E
5.1. Synthetic Data Tests ) ]
10° |
A virtual camera with rotation angles restrictecHtd).2 105 L N
rad and with a maximum focal length variation of 10 % be- ¢ | o= o]
tween two following frames is used. 10t b 7
At first a 3D point cloud is randomly constructed. The vir- o L ]
tual camera determines the first projection of the 3D points
into the camera plane to generate frame 1. After trans- 02
lating, rotating and changing the focal length of the vir- Outlier rate

tual camera frame 2 is generated. The corresponding feature

points are determined. A Gaussian noise is added to the fea‘Figure 6. Mean iterations required for 99% success-
ture point coordinates to simulate real world conditions. To | search : RANSAC (theoretically derived) vs. RPSO
simulate outliers the coordinates of some of the correspon- (synthetic data tests)

dences are randomly changed. With= 400 and varying
outlier rates the required number of iterations for a 99% suc-
cessful search is experimentally determined.

The coordinates of the feature points lie within

[~0.5u, 0.5u] wherew is any length unit. The true vari- 5 o Real Data Tests

anceas? of the Gaussian noise &2 = 5 - 10~ "u?. As-

suming that a real camera has 720x576 pixel resolution The proposed appraoch was tested on two outdoor image
this is equivalent to a Gaussian error with a standard devigairs. Fig. 7 shows the first image pair named ’leaves’ (A).
tionofo ~ 0.4 pel. o 594 correspondences were detected where RANSAC pro-
It proves that the variance?; specified in the cost func- gyced an outlier rate of = 0.78. In these images the leaves
tion may be greater than the true variaacewithout loosing  are moving and make it hard for the correspondence genera-
significant accuracy of the estimated parameters. The regon step to produce good results.

son for specifying a greater variance in the cost function isig. 8 shows the second image pair named 'berries’ (B)
the resulting search space which enables a faster global ceiawing a static building in the background and a shrub
vergence. Tab. 1 shows the parameters of the RPSO algf-the foreground. 710 correspondences were detected and
rithm depending on the outlier rate. RANSAC produced an outlier rate ¢f = 0.84. This im-

age pair was even harder for the correspondence generation
step due to many moving objects in the foreground.

Both image pairs were processed 800 times. Though RPSO

B | oZw’] | Ar, | size of¥ T[] > DIV )

05 [ 11.10°° [ 25 10 7103 was set up to stop at given |rjI|er ra}tg 3, the algorithm of-

06 9.10-° 35 10 = 10=3 ten stopped by reaching a higher inlier rate. Tab. 2 shows the
0'7 7100 10 10 7 10°3 setup parameters of RPSQ. In tab. 3_the resu_lts of the new ap-
0.8 5100 FE 10 = 10=3 proach applied on the two image pairs are given where

09] 3-10°° 60 25 5-1073 e [Brpso is the mean detected outlier rate

e rrpso IS the mean required number of iterations

Table 1. Synthetic data tests : Setup of RPSO param- 4 P, is the confidence rate and

eters . . . .
e rransac IS the theoretically derived mean required

number of iterations by RANSAC.

In both cases, the RPSO algorithm is superior to the
Fig. 6 shows the results of the synthetic data tests wheRANSAC algorithm and the required number of itera-
the required number of iterations is plotted. tions is consistent with the synthetic data experiments.
Compared to RANSAC based estimation the new apn order to compare the runtime efficiency the timeeeded
proach requires less iterations at outlier rates above 70%. far 10000 iterations was determined. In tab. 4 the measured



time in seconds for both image pairs and at various num-
bers of detected correspondences is given. It shows that the

runtime efficiency of RPSO is superior to RANSAC by a fac-
tor of 8.

Ié; O‘Ef[pelz] Ar, | size of¥ | 7[pel]
0.78 0.9 65 10 0.8
0.84 0.7 40 25 0.8

Table 2. Real data tests: Setup of RPSO Parameters

Brpso | TRPsO P, TRANSAC
0.77 2.89-10% | 0.9963 2.72-10°
0.83 6.87-10% | 0.9963] 2.80-10°

Table 3. Real data test results: Mean required num-
ber of iterations and corresponding confidence rate

Figure 7. Detected inliers (yellow) and outliers (red)
from image pair 'leaves’. Top left : RANSAC in-
liers+outliers, top right : RPSO inliers+outliers, bot-

tom left : RANSAC inliers, bottom right : RPSO inliers

A (leaves) | B (berries)

N 694 | 1193 | 710 | 1379
transac [S] | 82 160 94 183
trpso [S] | 10 | 20 | 12 | 23

Table 4. Real data tests: Runtime efficiency measure-
ments

6. Conclusions

References

Figure 8. Detected inliers (yellow) and outliers (red)
from image pair 'berries’. Top left : RANSAC in-
liers+outliers, top right : RPSO inliers+outliers, bot-

tom left : RANSAC inliers, bottom right : RPSO inliers

A technique for robust estimation of camera rotation,
translation and focal length at high outlier rates is presented.
The global optimizer in combination with the specified cost
function requires less computational expense compared to
the RANSAC algorithm. When the runtime efficiency is
taken into account, the proposed estimator is superior at out-
lier rates of 59% and above. Though the proposed technique
requires more iterations than the RANSAC algorithm at out-
lier rates below 70%, the upper bound for the required com-
putational effort of the estimation of camera rotation, transla-
tion and focal length is significantly decreased. The real time
estimation at high outlier rates can be facilitated. Another ad-
vantage of the proposed estimator is that it can be configured
to estimate any subset of parameters, e.g. only rotation and
one direction translation, so it is possible to benefit from any
constraints in the camera parameters.
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