
Efficient Multiple People Tracking Using
Minimum Cost Arborescences

Roberto Henschel1, Laura Leal-Taixé2, Bodo Rosenhahn1

1 Institut für Informationsverarbeitung, Leibniz Universität Hannover,
{henschel,rosenhahn}@tnt.uni-hannover.de

2 Institute of Geodesy and Photogrammetry, ETH Zurich,
leal@geod.baug.ethz.ch

Abstract. We present a new global optimization approach for multiple
people tracking based on a hierarchical tracklet framework. A new type
of tracklets is introduced, which we call tree tracklets. They contain bi-
furcations to naturally deal with ambiguous tracking situations. Difficult
decisions are postponed to a later iteration of the hierarchical framework,
when more information is available. We cast the optimization problem
as a minimum cost arborescence problem in an acyclic directed graph,
where a tracking solution can be obtained in linear time. Experiments
on six publicly available datasets show that the method performs well
when compared to state-of-the art tracking algorithms.

1 Introduction

A key challenge in many computer vision domains is to automatically detect ob-
jects in video sequences and track them with high accuracy over time. For appli-
cations such as surveillance, action recognition, animation or human-computer
interaction systems, multiple people tracking has emerged as one of the main
tasks to be solved. Algorithms in recent literature have shown great performance
in semi-crowded environments. In particular, the hierarchical tracklet approach
[11] has evolved as an excellent tracking framework, mainly because of its boot-
strapping capabilities, and is hence in the spotlight of current research. While
latest improvements have been mainly achieved by exploiting the bootstrapping
potential of this approach, little has been done to improve the quality of track-
lets. Even though tracklets are the input for many tracking methods, usually
these are found in a greedy way, and no appropriate method for finding reliable
tracklets has been presented so far. In this paper, we present a global associa-
tion method for tracklet creation within a hierarchical tracking framework. We
propose a generalization of tracklets, which we call tree tracklets, that fits bet-
ter into the hierarchical structure and, finally, a tracking method where tracklet
association is formulated as a minimum cost arborescence (MCA) problem. The
framework thus performs associations at each iteration with improved time com-
plexity of O(n) in the number of current tracklets n, and its performance is in
the range of less efficient state-of-the-art approaches.

2 Roberto Henschel, Laura Leal-Taixé, Bodo Rosenhahn

(a) The association graph (b) Tree tracklets

(c) Confident matches (d) Association graph,
next iteration

Fig. 1. In the association graph (a), each detection/tracklet Ψi is connected to all
possible tracklets in consecutive frames up to some maximum time gap (for simplicity
not all edges are drawn). The nodes of all shown figures are ordered from left to right
by increasing frame number w.r.t. the tail of the corresponding tracklet. Each incoming
edge of minimal weight is colored orange. The virtual start node Λ is used to model a
new trajectory start. Detections are then grouped into two sets (b), which we call tree
tracklets and cut into confident matches (c). In the next iteration of our algorithm,
a new association graph is built up (d) using the confident matches from the last
iteration. Ambiguities in the last iteration are then easily resolved.

1.1 Related Work

The problem of multiple people tracking is related to many computer vision
applications. A common way to tackle the problem is to divide it into two sub-
problems: (i) the detection of all objects and (ii) the correct aggregation of these
detections along time to form the final trajectories. People detectors [3, 7] achieve
high accuracy if the scene is not too crowded. Wrong detections occur especially
when people are partially occluded or when they are standing too close to each
other, being interpreted as one person.

The data association framework links detections in time, either on a frame-
by-frame basis (online systems) or by taking longer sequences into account (of-
fline systems). Recent advances have been made by formulating the problem
of finding the trajectories for all objects and all frames. Solutions are obtained
by solving a combinatorial optimization problem. If the number of objects is
known a-priori, [12] computes trajectories by solving a min-cost flow problem.
The formulation of [2] avoids this restriction; a solution is efficiently obtained by
solving a k-shortest-path problem. In [24, 17], the data association is formulated

Efficient Multiple People Tracking Using Minimum Cost Arborescences 3

as a maximum-a-posteriori (MAP) problem; a solution is inferred from a min-
cost flow. Instead of computing the complete trajectories at once, [11] introduces
a hierarchical approach where, at each iteration, the MAP problem is solved
with decreasingly restrictive parameters, using the computed trajectories from
the previous iteration to form the current trajectory solution. The Hungarian
method [14] is used to compute the associations, therefore, its time complexity is
O(n3) in the number n of tracklets for each iteration. The hierarchical structure
has proven to be a very fruitful approach, since it allows to extract a lot of in-
formation out of reliable tracklets. Bootstrapping-like optimization schemes for
tracklets have thus become a trend in the tracking field. For instance, the stan-
dard MAP formulation of a tracking framework requires probabilities for people
entering or leaving the scenery, which are generally not known a-priori. In [11],
the distribution of the tails of the tracklets is used to infer these probabilities
and [23] constructs an entrance/exit map which is derived from a convex set that
is spanned by the tails of long and confident tracklets. Improvements can also be
achieved on the motion and appearance affinities. For appearance measurements,
[23, 18, 15] train a classifier based on the computed tracklets. Having tracklets
at each iteration, [23] uses a quadratic function to extend the motion model
to non-linear movements based on the information of current tracklets. Motion
dynamics based on the rank of the Hankel matrix are considered in [4], allowing
for identifications of objects by their movement characteristics. If several people
walk close to each other, their motion will not be independent of each other.
[21] infers group behavior of detected people from the tracklets, while [17] uses
a physics-based social force model to predict pedestrians’ motion and [16] learns
this motion context directly from image features in order to perform tracking in
image space. Finally, [10] extends the hierarchical framework to take splits and
merges of trajectories into account, which commonly happen when people are
walking close to each other and then split, or vice versa.

Nonetheless, few works are dedicated to improving the method to find track-
lets or the hierarchical data association method itself. In this paper, we propose
an alternative association method with superior time complexity in comparison
to the Hungarian method together with the modification of the tracklet model
to tree tracklets which are constructed especially for a hierarchical framework∗.

1.2 Contributions

The main contribution of this paper is three-fold:

– A tracklet-based hierarchical tracking system where at each iteration the
data association is formulated as a minimum cost arborescence problem.

– A better time complexity than current global tracking methods. The time
complexity is O(n) at each iteration, where n is the number of tracklets.

– A new trajectory model, namely tree tracklets, for hierarchical tracking frame-
works, which handles false alarms and occlusions in a more natural way.

? The code is publicly available: http://www.tnt.uni-hannover.de/project/MPT/

4 Roberto Henschel, Laura Leal-Taixé, Bodo Rosenhahn

2 Tracklet Creation

A hierarchical tracking framework should iteratively connect tracklets by taking
decisions at each iteration only in very confident cases, so that difficult selections
can be postponed for a later iteration when more information is available thereby
reducing error propagation. The modified MAP formulation that we introduce
is modeled exactly for that purpose: it returns a generalization of the common
tracklets [11] as optimum value, which we call tree tracklets. Such tracklets are
more robust against error propagation and are obtained by solving a minimum
cost arborescence (MCA) problem (see Sect. 2.1).

Having the corresponding ordinary tracklets, false detections are removed
and restrictive parameters like the size of the time window are progressively
weakened, as associations become more and more confident (see Sect. 3 for more
details). Note that such a hierarchical approach has already been formulated in
[11] for tracklets using the Hungarian method. However, we reformulate the ap-
proach to work on tree tracklets and use the MCA formulation instead, resulting
in more robust tracklets and faster computation.

Finally, apart from serving as a complete tracking system, the tracklets from
any of the intermediate steps can be used as initialization for other tracking
frameworks.

2.1 Tracklet Creation with Arborescences

We introduce the notation used in this paper. Let R = {ri} be a set of object
detections obtained from a detector (e.g. [8, 7]) on a video sequence, transferred
into 3D. Thereby, ri := (pi, si, ti), where pi = (xi, yi, zi) denotes its position
in 3D, si = (wi, hi) the size of the bounding box and ti the time stamp of the
detection response, respectively. Let V be an arbitrary set together with time
functions frhead, frtail : V → Z. We fix a time window ω of frames that are allowed
between two detections to be connected and define the graph G(V) := G(V,Eω),
where Eω := {(v, w) ∈ V × V | frtail(v) < frhead(w) ≤ frtail(v) + ω}.

Now for V = R and frhead(r) = frtail(r) defined as the timestamp of r ∈ R, we
call a weakly connected subgraph I of G(V) a tracklet, if I is a directed path. For
example, Fig. 1(c) consists of 4 tracklets (of maximal length). For a tracklet I,
we define its head rhead = (phead, shead, thead) ∈ V (I) to be the unique detection
in I with lowest time stamp. Accordingly, we define the detection rtail ∈ V (I)
with highest timestamp to be the tail.

We obtain the (next) tracklets iteratively: We set I0 := R. Now let In denote
the current set of computed tracklets in the n-th iteration and let V := In. For
I ∈ V , we define frtail(I) as the timestamp of I’s tail, and frhead(I) of I’s head,
respectively, and say a weakly connected subgraph Ψ of G(In) is a tree tracklet,
if each node of Ψ has indegree ≤ 1 in Ψ .

Note that tree tracklets allow a tracklet to be connected to several tracklets
in successive frames, maintaining ambiguities until enough information has been
collected in following iterations (see Fig. 1(b)). We call a set Φ := {Ψ1, . . . , Ψs}
of (tree) tracklets a (tree) tracklet hypothesis if all (tree) tracklets are pairwise

Efficient Multiple People Tracking Using Minimum Cost Arborescences 5

disjoint, and say Φ is covering, if all nodes can be reached by some (tree) tracklet
of Φ. By using covering tracklets, we will force the framework to explain all
detections as best as possible. Finally, we denote by Φω the set of all covering
tree tracklet hypotheses. In particular, we solve multiple people tracking by
searching for that tracklet hypothesis that fits best to all detections.

We solve the problem of tracklet association using the MAP method:

Φ∗ = arg max
Φ∈Φω

P (Φ | In) = arg max
Φ∈Φω

P (In | Φ)P (Φ) = arg max
Φ∈Φω

∏
Ψk∈Φ

P (Ψk) . (1)

We have P (In | Φ) = 1, since Φ is covering. Furthermore, we assume that the
tree tracklets Ψk are independent of each other. Note that if we restrict (1) to
find the maximum only over tracklets, the optimization can be seen as a special
case of the ordinary MAP problem used in other frameworks (see [17, 24]).

For Φ ∈ Φω and Ψk ∈ Φ, let Ik1 be the first appearing tracklet of Ψk, where
V (Ψk) = {Ik1 , . . . , Ikm}. We define, modeled as a Markov chain, the probability

P (Ψk) := Pinit(Ik1)

|V (Ψk)|∏
s=1

∏
I∈I+ks

Plink(I | Iks) , (2)

where Plink(Ij |Ii) denotes the probability that the tracklet Ii belongs to the
same object as Ij . Thereby, I+ks is the set of outgoing nodes from Iks in Ψk. The
probability that a new object enters the scenery at the head of Ii is defined by
Pinit(Ii). We provide the concrete calculations of these probabilities in Sect. 3.

Inserting (2) in (1) and applying the negative logarithm, we obtain

Φ∗ = arg min
Φ∈Φω

∑
Ψk∈Φ

(
− logPinit(Iki1) +

|V (Ψk)|∑
s=1

∑
I∈I+ks

− log(Plink(I|Iks))
)
. (3)

Next we show the relation of Eq. (3) to the MCA problem.
Given a covering tree tracklet hypothesis Φ = {Ψ1, · · · , Ψs}, we construct a

graph G := G(Φ) by adding a virtual node Λ and link it to the first appearing
node Ik1 of every Ψk ∈ Φ. Then, G is an aborescence, that is a rooted (in this case
at Λ) directed graph such that there is a directed path from Λ to each node [9]
(see also Fig. 1(a)). Assigning weights to each edge, the minimum costs arbores-
cence (MCA) problem [9, 13] is to find the arborescence Φ̂ of G s.t. the total edge
weight w(Φ̂) :=

∑
e∈E(Φ̂) w(e) is minimal under all possible arborescences of G

rooted at Λ (denoted by AG). If we define the weights w(Λ, I) := − log(Pinit(I))
and w(Ii, Ij) := − logPlink(Ij |Ii) for all I, Ii, Ij ∈ In and rewrite (3) in terms of
the defined graph G, we obtain

Φ̂ = arg min
(V,E)∈AG

∑
(Λ,Ii)∈E

w(Λ, Ii) +
∑

(Ii,Ij)∈E,
Ii 6=Λ

w(Ii, Ij) . (4)

Hence, a solution of (3) is obtained by solving the MCA problem. Then, Φ∗ is
the set of weakly connected components of Φ̂ − {Λ}. A solution for the MCA

6 Roberto Henschel, Laura Leal-Taixé, Bodo Rosenhahn

problem can be computed in polynomial time by Edmond’s algorithm [5]. In our
case though, since G does not have any directed cycle, it can be shown that it
is sufficient to select for each node the incoming edge of minimal weight (see for
example [13]), so if (V ∗, E∗) := G(Φ), then

Φ̂ =
(
V ∗, {(u, v) ∈ E∗ | w(u, v) = min {w(u′, v) | (u′, v) ∈ E∗}}

)
. (5)

Regarding the time complexity of this procedure, we can construct the solution
Φ̂ simultaneously while building up the graph G, using (5), and adding only
computation costs of O(1) to the cost of constructing G. From that we obtain
Φ∗, having computation costs of O(n) in the number of current tracklets n.
Furthermore, we can update the association information after each frame that
has been processed.

2.2 Using Bifurcations to Detect Ambiguities

Since tree tracklets can contain bifurcations, we explain how to deal with them.
Note that when we say bifuraction it can be a split into two or more branches.
Now bifurcations can be used to spot missing detections caused by splits and
merges: If persons walk close together, the detector might create only one box
around them, resulting in one trajectory for the group. Once a person leaves
the group, the corresponding tracklet will also contain this split in form of a
bifurcation. Furthermore, they help to spot and remove false detections. Figure
1 illustrates such a situation. The green box is a false detection and the red
box is a correct detection within the same frame. The false detection causes an
ambiguity. However, only the most likely detection is assigned to the detection in
the next frame (Figure 1 (b)). The tree tracklet structure can thus automatically
isolate the false detection and construct the right trajectory in the next iteration.
Hence, we handle tree tracklets as explained in Algorithm 1 and obtain the next
set of tracklets In+1. Note that a currently computed tracklet Ψ becomes one
node in the next iteration. For example in Fig. 1(c), the tracklets Ψ2 and Ψ6

are connected. Therefore, they are grouped together to the new node Ψ7 in
the next iteration (Fig. 1(d)). The ambiguity between the nodes Ψ1, Ψ3 and Ψ4 is
postponed to the next iteration. However, the tracklet Ψ4 is connected to another
tracklet, resulting in new information that can be used in the next iteration.

3 Implementation Details

We provide the definitions of the functions Plink and Pinit that we use in our
experiments. For an arbitrary video sequence, information about the scenery is
not available a-priori. Hence, we set the entrance probability to be a constant
value θ ∈ [0, 1], so Pinit(Ii) := θ for all tracklets Ii ∈ In.

Given tracklets Ii, Ij ∈ In, we define the time difference 4i,j = |ttaili − theadj |
and the forward directed velocity vectors in vi,vj of Ii and Ij at phead

i and ptail
j ,

respectively. Let δfi,j := ptail
i +4i,jvi − phead

j and δbi,j := phead
j −4i,jvj − ptail

i

be the error of a linear extrapolation from Ii to Ij and vice versa.

Efficient Multiple People Tracking Using Minimum Cost Arborescences 7

Algorithm 1 Computing tree tracklets

Input: MCA Φ̂, rooted at Λ
Output: Tracklets In+1 := {Ψ1, · · · , Ψs}
1: C := {Λ}, c(n) := 0, for all nodes n of Φ̂.
2: for n ∈ C do
3: if n has siblings then
4: c(n) := new unique number
5: else
6: c(n) := c(m), where m is the parent node
7: end if
8: C := C ∪ Cnew \ {n}, Cnew being the set of children of n
9: end for

10: for each assigned value k of the function c do
11: Ψk is the subgraph of Φ̂ induced by all nodes n 6= Λ with c(n) = k.
12: end for

We define the link probability as Plink(Ij | Ii) = At(Ij | Ii)Am(Ij | Ii) where
the term At(Ij | Ii) (as defined in [11]) is used to avoid too big time jumps, and
the motion affinity (based on [11]) is defined as:

Am(Ii | Ij) =
N (δfi,j ,0,4i,jΣ)N (δbi,j ,0,4i,jΣ)

N (0,0,4i,jΣ)2
. (6)

Here, N (d,0, Σ) denotes the multivariate normal probability distribution of the
linear extrapolation error, with mean 0 and covariance Σ. To obtain Σ, we run
one iteration of the algorithm using only distance information between detections
as in [17]. We then use the resulting tracklets to learn an error distribution of the
extrapolation using velocity vectors for each triplet of connected nodes. These
tracklets are then discarded since they are only used for initialization.

4 Experiments

We evaluate the proposed tracking framework on several publicly available datasets:
Bahnhof, Sunnyday, Jelmoli and Linthescher [6] and TownCenter [1]. Detections
for Bahnhof and Sunnyday are obtained from [22], for Linthescher and Jelmoli
we use [7]. For TownCenter, starting from the first frame, we take every tenth
frame and use the detections provided with the dataset [1]. For the evaluation,
we use the following metrics [18]: Recall (correctly matched detections / ground
truth detections), Precision (correctly matched detections / detections of result-
ing tracks), MT (mostly tracked trajectories, over 80% tracked), ML (mostly lost
trajectories, less than 20% tracked), PT (partially tracked trajectories, tracked
> 20% and < 80%), Frg (track fragments) and Ids (number of identity switches).

4.1 Influence of the Parameters

We first analyze the effect of the parameters of Sect. 3 on the Bahnhof dataset.

8 Roberto Henschel, Laura Leal-Taixé, Bodo Rosenhahn

0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

MT

Precision

Recall

(a) Entrance
probability θ

2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

MT

Precision

Recall

(b) Maximum
frame jumps in the

1st iteration

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

MT

Precision

Recall

(c) Number of
iterations

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Bifurcations

(d) Number of
bifurcations at each

iteration

Fig. 2. (a,b,c) Parameter analysis on the Bahnhof dataset using MT (mostly tracked),
Recall and Precision metrics. (d) Bifurcation evolution at each iteration on the Town-
Center sequence.

Entrance probability θ. The decision wether two tracklets are being connected
by the algorithm has a dependence on the choice of the entrance probability θ,
which controls wether the algorithm connects fewer tracklets with more confi-
dence or more tracklets with less confidence. As we can see in Fig. 2(a), our
algorithm is robust against changes of this parameter, but it works better for
values < 0.1, which is why we use θ = 0.09 at the first iteration and decrease to
0.05 in the last.

Time window ω. On a dataset with a too small time window, detections/tracklets
with a big temporal distance cannot be connected, resulting in shorter tracklets.
On the contrary, a too big time window can, depending on the time costs, result
in false assignments. Figure 2(b) shows that our algorithm runs on a wide range
of time windows producing good MT and Recall values, but as expected, this
is at the expense of a decrease in Precision. We find a good compromise with
ω = 5, where we are still able to recover reliable tracks in the first iteration and
only deal with longer tracks in successive iterations. ω is then increased by one
at each iteration.

Number of iterations K. Figure 2(c) plots the MT, Precision and Recall values
for the numbers of iterations of our algorithm. As the algorithm proceeds, more
and more tracklets are being connected, resulting in an increasing MT value
with only small improvements after 4 iterations. For all our experiments, we use
K = 5 iterations. To remove false detections, we delete tracklets after the second
iteration, if their length is smaller than 3 and after the fourth iteration, if their
length is smaller than 4. This is why we see a small decrease in Precision at
iterations 3 and 5. However, the slightly increasing Recall value shows that our
simple tracklet removing approach is already sufficient to remove false detections
without producing more missing detections.

Bifurcation handling. Finally, Fig. 2(d) shows the number of bifurcations in
the Town center dataset after each iteration. We see how the algorithm im-
proves the results by continuously solving ambiguities. The figure shows nearly
an inverse proportional relation between the number of iterations and number
of bifurcations, until it approximately converges after 5 iterations.

Efficient Multiple People Tracking Using Minimum Cost Arborescences 9

Fig. 3. Example of tracked pedestrians from the Bahnhof sequence.

4.2 Runtime

Our tracking system is implemented as a non-optimized Matlab code. Using the
parameters given in Sect. 3, trajectories on a sequence of 999 frames with 6536
detections and 5 iterations are computed in 8 seconds on a 3.5 GHz machine (see
Table 1). Note that we compute the trajectories for the complete sequence at
once. Other papers (e.g. [17]) separate the sequence into batches to get the results
in reasonable time. Our algorithm performs an iteration in linear time, i.e. each
iteration has a worst-case complexity of O(r) in the current number of tracklets
r, given the cost graph that models the probabilities. In addition to that, the size
of our graph decreases after every iteration, since more and more detections are
grouped together. Therefore, the total computational complexity is in O(Kd),
where K is the number of iterations and d is the number of detections. In most
cases however, the algorithm will have a better runtime complexity, since the
number of tracklets in each iteration decreases in most cases exponentially.

Method Total runtime Graph creation Solver

Simplex [24] 16 9 7
Proposed 8 6 2

Table 1. Runtime in seconds of the algorithm on the Bahnhof dataset (999 frames).

Most other globally optimizing tracking frameworks solve a min-cost flow
problem [24] on a graph that is similar to the graph used in our model, having
entrance/exit, detection and transition edges, respectively. Their algorithm has
a worst-case complexity of O(n2m log2(n)), where n and m denote the number of
nodes and edges of the graph, respectively. See also Table 1. Improvements have
been made by [20], who solve a k-shortest path problem and obtain a worst-case
time complexity of O(kN logN), wehre N denotes the number of frames and k
denotes the optimal number of trajectories. Note that typically K << N .

4.3 Tracking Performance

Finally, we compare our algorithm with state-of-the-art tracking systems. Since
we implemented our tracking system using 3D detections, we compare only to
methods that are based on 3D detections, ensuring a fair comparison. Hence, we
compare to the following state-of-the-art trackers:

– Zhang et al. [24] propose a tracking framework based on linear programming,

10 Roberto Henschel, Laura Leal-Taixé, Bodo Rosenhahn

– Pellegrini et al. [19] take avoidance behavior of humans into account, and
– Leal-Taixé et al. [17] combine linear programming with a social force model.

Overall, the results of the proposed method are competitive with state-of-
the-art tracking approaches, while being computationally more efficient. Note the
results on the TownCenter dataset, where our method achieves 6% more Recall
than the best method and has 13% more Mostly Tracked (MT) trajectories,
while keeping a low number of identity switches. Note that our algorithm neither
considers any special social modeling as in [19, 17] nor any type of appearance
model. In Fig. 3 we show an example of the trajectories obtained using the
proposed method on the Bahnhof sequence.

Dataset Method Rec. Prec. MT PT ML Frg Ids

Bahnhof

[24] 67.6 70.9 43.7 46.8 9.6 176 39
[17] 73.3 75.4 51.1 41.5 7.4 155 107
[19] 71.6 84.9 46.8 48.9 4.3 173 62

Proposed 75.3 78.4 56.4 38.3 5.3 166 76

Sunnyday

[24] 76.8 70.6 73.3 16.7 10.0 39 9
[17] 78.1 75.3 73.3 16.7 10.0 29 24
[19] 75.5 80.5 66.6 23.3 10.1 33 15

Proposed 79.4 75.9 73.3 20.0 6.7 38 12

Linthescher

[24] 56.7 59.7 18.8 34.6 46.7 163 42
[17] 61.1 64.6 23.1 37.0 39.9 149 107
[19] 59.7 75.2 20.2 40.4 39.4 168 44

Proposed 61.7 65.4 20.1 42.8 37.0 223 107

Jelmoli

[24] 53.3 62.3 14.9 46.8 38.3 30 4
[17] 55.4 70.6 14.9 51.1 34.0 36 25
[19] 53.5 76.7 17.0 46.8 36.2 48 15

Proposed 52.3 68.5 12.8 51.1 36.2 40 17

Town center

[24] 77.2 79.9 53.3 39.6 7.1 135 233
[17] 77.9 88.7 53.3 37.8 8.9 56 68
[19] 74.5 77.5 44.0 48.4 7.6 53 42

Proposed 83.8 81.2 66.7 23.1 10.2 70 41

Table 2. Tracking results on different datasets. MT = mostly tracked. PT = partially
tracked. ML = mostly lost. Frg = fragmented tracks. Ids = identity switches. Values
for [24, 19, 17] are taken from [16].

5 Conclusion

In this work we introduced a new type of tracklets, namely tree tracklets, which
contain bifurcations to naturally deal with ambiguous tracking situations. These
are then used in a hierarchical tracking framework, which we formulate as an
optimization problem than can be solved in linear time. Experiments show good
running time as well as performance compared to state-of-the art tracking sys-
tems on six publicly available datasets.

Efficient Multiple People Tracking Using Minimum Cost Arborescences 11

References

1. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video.
In: CVPR (2011)

2. Berclaz, J., Fleuret, F., Türetken, E., Fua, P.: Multiple object tracking using k-
shortest paths optimization. TPAMI (2011)

3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR (2005)

4. Dicle, C., Sznaier, M., Camps, O.: The way they move: Tracking targets with
similar appearance. In: ICCV (2013)

5. Edmonds, J.: Optimum branchings. Journal of Research of the National Bureau of
Standards Section B - Mathematical Sciences (4) (1967)

6. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust
multi-person tracking. In: CVPR (2008)

7. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with
discriminatively trained part based models. TPAMI (2010)

8. Gall, J., Yao, A., Razavi, N., van Gool, L., Lempitsky, V.: Hough forests for object
detection, tracking and action recognition. TPAMI (2011)

9. Gibbons, A.: Algorithmic graph theory. Cambridge University Press (1985)
10. Henriques, J.F., Caseiro, R., Batista, J.: Globally optimal solution to multi-object

tracking with merged measurements. In: ICCV (2011)
11. Huang, C., Wu, B., Nevatia, R.: Robust object tracking by hierarchical association

of detection responses. In: ECCV (2008)
12. Jiang, H., Fels, S., Little, J.: A linear programming approach for multiple object

tracking. In: CVPR (2007)
13. Kamiyama, N.: Arborescence problems in directed graphs: Theorems and algo-

rithms. Graduate School of Information Sciences, Tohoku University (2014)
14. Kuhn, H.W.: The hungarian method for the assignment problem. Naval research

logistics quarterly 2(1-2), 83–97 (1955)
15. Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned dis-

criminative appearance models. In: CVPR (2010)
16. Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning

an image-based motion context for multiple people tracking. In: CVPR (2014)
17. Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.: Everybody needs somebody: Model-

ing social and grouping behavior on a linear programming multiple people tracker.
ICCV Workshops. 1st Workshop on Modeling, Simulation and Visual Analysis of
Large Crowds (2011)

18. Li, Y., Huang, C., Nevatia, R.: Learning to associate: hybrid boosted multi-target
tracker for crowded scene. In: CVPR (2009)

19. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: modeling
social behavior for multi-target tracking. In: ICCV (2009)

20. Pirsiavash, H., Ramanan, D., Fowlkes, C.: Globally-optimal greedy algorithms for
tracking a variable number of objects. In: CVPR (2011)

21. Qin, Z., Shelton, C.R.: Improving multi-target tracking via social grouping. In:
CVPR (2012)

22. Yang, B., Nevatia, R.: An online learned crf model for multi-target tracking. In:
CVPR (2012)

23. Yang, B., Nevatia, R.: Multi-target tracking by online learning of non-linear motion
patterns and robust appearance models. In: CVPR (2012)

24. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking
using network flows. In: CVPR (2008)

