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ABSTRACT

Many recent superpixel algorithms for video content rely on
dense optical flow vectors to propagate segmentation results
from one frame to the next. In this paper, we assess the impact
of the optical flow quality on the over-segmentation quality.
Our evaluation shows that it is indispensable for videos with
large object displacement and camera motion. But due to the
high computational costs high-quality, dense optical flow is
not suitable for real-time applications. Therefore, we pro-
pose a fast propagation scheme that is based on sparse fea-
ture tracking and mesh-based image warping. In a thorough
evaluation, we compare our proposed scheme to the results of
other state-of-the-art propagation methods using established
benchmarks. The results show that our method speeds up
the propagation process by a factor of 100 while producing
a comparable segmentation quality.

Index Terms— Superpixel, supervoxel, optical flow

1. INTRODUCTION

In recent years, many video-based computer vision applica-
tions like video segmentation and tracking (e.g. [1, 2, 3])
have relied on a superpixel segmentation of the video frames
to improve efficiency as well as the quality of the final re-
sults. The idea to reduce the amount of image primitives by
grouping spatially-coherent pixels, which share similar low-
level features as e.g. color or texture, into small segments of
approximately homogeneous size and shape was introduced
in [4]. Several approaches were published that transfer the
idea of over-segmentation from still images to the video do-
main. These are supervoxel algorithms (e.g. [5, 6]) and tem-
porally coherent superpixel algorithms (e.g. [7, 8, 9, 10, 11]).

A majority of these approaches utilize information ob-
tained from the optical flow in order to initialize new frames
to be processed. This is especially beneficial for sequences
with fast and rapid motion resulting in a better segmentation
quality. The drawback is the often high computational ef-
fort of optical flow algorithms. As supervoxel or temporally
coherent superpixel algorithms are usually utilized as a pre-
processing step the flow computation can be a non-negligible
part of the overall processing costs and thus a potential imped-
iment for the wide acceptance and utilization of these algo-
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Fig. 1. Sparse features are tracked between frame k and frame
k+1. A mesh is generated using a Delaunay triangulation.
The mesh is laid over the superpixel label map of frame %k and
the content of each triangle is warped to the frame k41 by
performing an affine transformation.

rithms. Reducing the processing costs of the flow generation
without impairing the over-segmentation quality is therefore
crucial. Hence, we propose a fast label propagation scheme
utilizing sparse feature tracking in combination with Delau-
nay triangulation and image warping to initialize new frames
as it is shown in Figure 1. The key contributions of this paper
are:

o the evaluation of the impact of the optical flow infor-
mation on the segmentation results as well as

e a new fast label propagation method based on sparse
features and a mesh-based warping scheme suited for
real-time processing.

The remainder of this paper is structured as follows. In
Section 2, we discuss and evaluate the impact of optical flow
information on the final segmentation quality. In Section 3,
we describe our fast label propagation scheme and compare it
to state-of-the-art propagation methods using the established
benchmarks in Section 4. Finally, Section 5 concludes our

paper.
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Fig. 2. The 3D undersegmentation error for two classes of sequences (with and without camera motion) and their combination.
In case of camera motion the error is lower for approaches using optical flow (TSP, TCS, w/ HS) than for approaches that don’t
(OnlineVideoSeeds, w/o optical flow). The usage of an optical flow method with more moderate computational costs like Horn
& Schunck [12] (w/ HS) doubles the error in some cases when compared to the results with high-quality optical flow of [13].

2. IMPACT OF OPTICAL FLOW

In this section, we evaluate the impact of the optical flow in-
formation on the final segmentation quality. Here, we will
concentrate on superpixel algorithms for video content. So
far, all of the temporally coherent superpixel approaches pro-
cess a video either on frame-level [7, 8, 9] or on sets of ad-
jacent frames [10, 11]. Thereby, new frames are initialized
using intermediate or final segmentation results of the latest
frame. Moreover, to capture rapid object movement as well
as camera motion the approaches described in [7, 8, 10, 11]
use dense optical flow to propagate label information into the
new frame. Omitting this optical flow information might lead
to superpixels that are not able to follow fast moving objects
resulting in a non-consistent or even incorrect temporally co-
herent superpixel segmentation.

To analyze and evaluate the impact of the optical flow
on the superpixel segmentation quality we use benchmark
results' for the latest superpixel algorithms for video con-
tent. Figure 2 depicts the 3D undersegmentation error over the
number of supervoxels in order to provide a good overview of
the segmentation quality at one glance. Graphs with a bench-
mark metric plotted over the average number of superpixel
per frame as proposed by [8] can be found in Section 4. It
should be noted that for the second type of diagrams the aver-
age temporal length also needs to be taken into consideration.
Otherwise a superpixelation of each frame individually could
produce an equivalent undersegmentation error without pro-
viding any temporal consistency at all.

For our analysis we used the dataset proposed in [16] and
split the eight sequences into two classes. The first class in-
cludes sequences with camera motion, whereas the second
class comprises those sequences with a fixed camera and only
rigid and non-rigid object motion. The corresponding results
are plotted in Figure 2 in the left and center diagram while the
right diagram shows their combination, i.e. the result for the
complete dataset.

The diagrams include results for the recent state-of-the-

'Benchmark routines used in this paper are provided by [14] and [15].

art temporally coherent superpixel algorithms OnlineVideo-
Seeds [9], TSP [8] and TCS [11]. The latter two use dense
optical flow of high quality to propagate the superpixel labels
onto new frames to be processed. While [8] filters the opti-
cal flow using an approach similar to a bilateral filter in order
to produce a smoother flow, [11] uses the pure optical back-
ward flow to obtain the label information for each pixel of
the new frame. In order to assess the importance of the opti-
cal flow, we also present results for two modified versions of
TSP and TCS. One with optical flow calculated using Horn &
Schunck’s computationally less costly method [12] (denoted
w/ HS) and one with completely deactivated optical flow (de-
noted w/o optical flow). Thereby, the latter case copies the
superpixel segmentation from the latest frame to initialize the
new frame. These results are directly comparable to the re-
sults of OnlineVideoSeeds [9] that does not utilize optical flow
information and new frames are initialized by copying the la-
bel information from one of the higher block hierarchies of
the previous frame.

The left diagram of Figure 2 shows that for the sequences
with camera motion the undersegmentation error of the ap-
proaches using optical flow is lower than for approaches with-
out optical flow. An exception is the TCS algorithms which
seems to be quite robust against the different inputs for the
propagation mechanism. For the sequences without camera
motion the results of all approaches are close together. Only
the modified version of [8] without optical flow usage pro-
duces a significantly larger segmentation error. But the dif-
ference to the unmodified version is much smaller for the
sequences without camera motion than for those with cam-
era motion. We conclude from these results that the usage
of the optical flow information can be very beneficial, espe-
cially for video sequences with camera motion. This clearly
indicates that flow information should be used but somehow
the high computational costs for providing it has to be re-
duced. Therefore, it is essential to replace the calculation of
the high-quality, dense optical flow with a rather lightweight
propagation scheme without degrading the quality of the final
over-segmentation.
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Fig. 3. From top to bottom row: Original frame (cropped).
Sparse features found in frame k+ 1 are tracked back into
frame k. A mesh is obtained from triangulation of the feature
points and deformed by the movement of the tracked features.
The superpixel label map of frame k is warped by an affine
transformation according to the deformation of the mesh and
is used as initialization for frame k + 1.

3. FAST LABEL PROPAGATION

Our idea for a fast label propagation is inspired by the work
presented in [17] and is visualized in Figure 3 for two sample
video frames k and k-+1 (see first row). Instead of calculat-
ing a dense optical flow as done in e.g. [7, 8, 10, 11] we only
track a set of sparse features between the current frame %k and
the next frame &£+ 1 whose superpixel label map needs to be
initialized. The features are calculated for frame k-+ 1 using
a Harris corner detector [18]. We use the method of [19] to
select “good” features and track them back to frame & using
a Kanade-Lucas-Tomasi (KLT) feature tracker [20] (see Fig-
ure 3 second row). Outliers are removed by the cluster filter
proposed in [17]. Using a Delaunay triangulation a mesh can
be generated from the features of frame k41 (Figure 3 third
row, right). Subsequently, the mesh is warped (backward)
onto the superpixel label map of frame & (see Figure 3 third
row, left) using the information provided by the KLT feature
tracker. Under the assumption of a piece-wise planar surface
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Fig. 4. Warping of superpixel labels covered by a triangle.

in each triangle we use an affine transformation to warp the
superpixel labels inside each triangle (forward) from frame k
onto frame k41 as shown in Figure 4. The transformation ma-
trix T; ;11 in homogeneous coordinates for each triangle 7 be-
tween frame k41 and k is determined using the three tracked
feature points of a triangle.
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The Matrix elements ¢4 ; to 4 ; determine the rotation, shear-
ing, and scaling, whereas the elements ¢5; and ¢s; denote
the translation. Using this transformation matrix of the trian-
gle the homogeneous coordinates of each pixel (z, y, 1)7,;H in
frame k+1 can be transformed into coordinates (, 7, 1)% of
frame k.
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The coordinates are clipped to the nearest valid pixel position
and then used to look up the label in the superpixel label map
of frame & (see Figure 3 fourth row, left). The generated label
map for frame k+1 is depicted in Figure 3 (forth row, right).
To ensure that each pixel is covered by the mesh we force four
features to be located at the corners of the frame and four at
the middle of each frame border.

Occasionally after the warping some pixels are split-off
from the main mass of a superpixel due to the transformation.
As the spatial coherency of the superpixels has to be ensured
these fractions are identified and assigned to a directly neigh-
bored superpixel. As this step is also necessary if a dense
optical flow is used it does not introduce any additional com-
putational overhead.

4. EXPERIMENTS

In this section, we evaluate the quantitative performance of
the proposed fast label propagation method. Therefore, we
integrated our proposed method into the frameworks of [8] as
well as [11] and compared the results to the original methods.
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Fig. 5. Benchmark results for different temporally coherent superpixel algorithms using various superpixel label propagation
approaches. Note that the 3D undersegmentation error is plotted over the number of supervoxels per sequence as well as over
the number of superpixels per frame. To assess the spatio-temporal segmentation quality the latter has to be evaluated together

with the average temporal length.

As a baseline we show again the results of the original meth-
ods and their modifications from Section 2. Additionally, we
include the latest state-of-the-art supervoxel method from [6]
for comparison. For the results we again used the eight se-
quences of [16] and set the default parameters as given by the
authors. Figure 5 shows the 3D undersegmentation error and
the average temporal length over the number of superpixels
per frame as well as the 3D undersegmentation error plotted
over the number of supervoxels. Note the remarks about plot-
ting results over supervoxels and superpixels given in Sec-
tion 2. Additionally, the 2D boundary recall is shown as a
measure of the segmentation quality per frame. It can be seen
that our proposed mesh based propagation method produces
a comparable segmentation error while the average tempo-
ral length is only slightly decreased. While the 2D boundary
recall stays the same for the framework of [8] the recall is
improved if our propagation method is integrated into the al-
gorithm of [11].

To evaluate the performance improvements in terms of
computational cost we measured the average runtime of the
dense optical flow based label propagation and the mesh
based propagation. For a fair comparison we exclude the bi-
lateral filter stage described in [8] and thus only have to con-
sider the computation of the utilized dense optical flow [13].
For Horn & Schunck we used [21]. The comparison to our
single threaded implementation was performed on an In-

We thank the authors of [17] for the fruitful discussion and advice.

Avg.time/frame
Method used in [8] and [11] 814.9 ms
Horn & Schunck [12] using [21] | 114.3 ms
Proposed method 6.1 ms

Table 1. Average runtime needed to propagate a superpixel
label map onto a new frame.

tel Core i7-3770K @ 3.50GHz. Table 1 shows timing results
solely for the superpixel label propagation task excluding
segmentation. The results show that our method is 100 times
faster than the originally proposed methods while creating
nearly the same segmentation quality as shown in Figure 5.

5. CONCLUSION

In this paper, we have shown that the utilization of optical
flow to initialize the superpixel label maps of new frames is
beneficial for video sequences with camera motion or object
movement. We have also presented a new and fast superpixel
label propagation method that uses sparse feature tracking
combined with image warping techniques for the initializa-
tion of new frames. Our experiments indicate that using our
method in a superpixel algorithm for video content a compa-
rable segmentation quality can be achieved while speeding up
the initialization process by a factor of 100.
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