A Metric Learning Approach for Multi-View Object Recognition and Zero-shot Pose Estimation
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Pose estimation, especially in case of multiple object classes, remains
an important and very difficult problem due to extreme pose-dependent ap-
pearance variations, as well as challenges associated with obtaining precise
ground truth pose for real-world images, necessary for training supervised
viewpoint estimation models [5]. As a result, annotated data is often avail-
able only for a limited number of classes, and therefore it would be desirable
to extend the existing approach for pose estimation to generalize to the new
classes. The important property to notice is that there exist common pose-
specific similarities across categories.

To exploit those similarities, as well as to address the problems men-
tioned above, we propose a metric learning approach for the task of joint
object categorization and pose estimation, that does not require precise or
dense viewpoint labels. Moreover, the learned metric generalizes to new
classes, for which the pose labels are not available, and therefore makes it
possible to use only partially annotated training sets, relying on the intrinsic
similarities in the viewpoint manifolds for information transfer.

We resort to metric learning because modeling the pose variation with
similarity constraints is a natural way to express on one side continuity of the
appearance variation due to pose changes (unlike classification with discrete
labels) and on another side allows to make learned metric independent of the
pose label type (unlike regression approaches).

To summarize, our contributions are the following: 1) We explore metric-
learning-based approaches for simultaneous pose and category prediction
and show how to extend these methods for detection. 2) We propose a novel
multi-task metric learning approach, which shares a common metric among
the classes to capture shared view-specific components, while still allow-
ing to capture class-specific individual aspects of pose-parametrized appear-
ance. 3) We show that models learned using the multi-task approach are
capable of performing zero-shot pose estimation, which, to our knowledge,
is a novel task not addressed by any existing models. 4) We obtain state-of-
the-art performance on both pose and category recognition in 3DObjects [3]
and PASCAL3D+ [5] datasets.!

Metric learning formulation: Past works have shown that the instances
in different viewpoints form a continuous low-dimensional manifold in the
original feature space [6], and our goal is to exploit and magnify such man-
ifold structure with distance constraints; more specifically, we want to learn
a Mahalanobis distance matrix Q, such that a sample has a smaller distance
to another sample in a similar pose, compared to the distance to a sample
that has a very different pose. Given two points x;,X; € RP, the distance
between these two points is defined as

dQ(Xi7Xj) = (X,'—Xj)TQ(X,'—Xj) (1)
Given the training set D = {(Xi,y,-,pi)}fvjl, where x; € R is D-dimensional
feature vectors, y; € 1...C — category labels, and p; € R — pose labels,

the problem of learning a joint metric for class and pose estimation can be
written as:

min} (1 - p) U,+Z€,,,u+/ltr 0), 0x0 2
ijl

do(xi,xj) +me < dQ(xiaxl) +Git,  Yi=YiYiFEN (3)

do(xi,xj) +m, <dg(xi,x;)+ &, yi=yj=w )
dp(pi,pj) < t1,dp(pi,p1) > tu (5)

where tr(Q) is the trace of Q and Q is semidefinit, & = max(&,0), and
dp(-,-) is the distance in the pose space, specific for the annotations pro-
vided. Further, #;,1, are similarity and dissimilarity thresholds and m, and
m, are the margins. The relative scale of m. and m, is crucial for learn-
ing; experimentally we verified, that setting m, = m,/C gives good results.
Since the view manifold is low-dimensional, it is reasonable to require Q
to be low-rank. Minimizing the rank can be in turn approximated by the
nuclear norm ||Q||,, which is equivalent to tr(Q), that we minimize in (2),
for a positive semidefinite matrix Q. However, in general, different classes
may not share identical pose metrics. Moreover, classification task differs
significantly from the viewpoint estimation task, and therefore the require-

!'The original publication will appear at AAAI 2016 as "Exploiting View-Specific Appearance
Similarities Across Classes for Zero-shot Pose Prediction: A Metric Learning Approach”

Figure 1: We learn a global metric Qp to discriminate classes and preserve global
view-specific appearance, as well as class-specific pose estimation metrics Q4 and

Qpus- This joint learning allows to predict the pose for instances of novel object
classes. For example, we can estimate the pose of the class bus by utilizing the view
labels for class car, which is its neighbor in the class space.

ments imposed on the metric could differ and even be contradictory, when
only a single metric Q is learned. We resolve this issue by introducing a
global shared metric Qg that discriminates classes as well as preserves com-
mon manifold for view estimation. We then enable each class to have its
own pose metric Q.: We propose the following multi-task formulation:

gy in Y55 (1— )+ Y G+ Ate(Qo) + Yyr(Qc) - (6)
Qo Q Cijl ijl c

do, (xi,xj) +me <dgy(xi,x)) +&iji,  Yi=YjYi#N @)
dgy+o, (xisxj) +my < dg, 1o, (xi,x) +Gji,  yi=yi=yi=c (8)

dp(pi,p;) <t1,dp(pi,p1) > tu, Q0 >=0,0,=0,c=1...C

The optimization problems formulated above are instances of semidefinite
programming. We use a variant of stochastic projected gradient descend
which subsamples active constraints for optimization.

Pose estimation and class prediction: Given a set of training triplets
D and a set of learned metrics Qg,Qc,c = 1...C, for a new sample x*,
the k nearest neighbors {x;};c;, from the training set are selected using
the set of learned metrics, such that distance to the sample x; is measured
as dj = dg,+¢, (X*,X;). The final pose prediction p is formed by finding
modes of each class of the resulting set, with the confidence defined as

= Yjei(p , where I(p) C I is a subset of the neighbors contribut-
ing to the mode

Class label prediction is done by performing k nearest neighbor search

using the learned metric Qg, and choosing the weighted mode of their class
labels as the final prediction; the confidence for the class c is than computed
asr* =Y jero)d; ={j:j€lyj=c}
Zero-shot pose prediction: The proposed algorithm for pose estimation
can be extended for pose prediction for the categories without any pose la-
bels. To do so, we train the model using (6)-(8) (or (2)-(4)) without impos-
ing view-preserving constraints on the categories that do not have viewpoint
labels. Then, for zero-shot pose estimation, we only consider the samples
that have pose labels as potential nearest neighbors. The main assumption
we make here is that the training set will contain some categories that are
similar to the category without pose labels.

Since different categories might have different, unaligned, pose labels,
the prediction for a sample from a category without a pose label C; is formed
as a set p = {p¢ € RP}.cc, where p€ is the prediction of the class ¢ and C
denotes different classes among k nearest neighbors. In the experiments we
observed, that only a small subset of all classes participate in the prediction
formation for all samples of the class C;.

The set of predictions p can be afterwords transformed to the relative
pose prediction between two samples of the class C,. The relative pose
between two samples can be computed as:

Z dP P,aP,)
c€Cuer

d(pi,pj) = )

|Cacz |

where Cyqer = C;NCj is the set of the classes, that formed prediction for both
samples i and j; if two samples have a non-intersecting set of predicting



bicycle car cell iron mouse shoe stapler toaster mean
KNN-VC | 47.0/17.1 | 47.3/25.0 | 45.6/20.7 | 45.6/19.1 | 43.2/20.8 | 48.5/22.7 | 47.2/20.8 | 41.9/19.6 | 45.7/20.7
J-vC 48.4/20.5 | 44.6/23.5 | 46.3/22.5 | 45.5/20.6 | 44.9/23.9 | 46.1/25.2 | 46.4/22.8 | 42.0/19.2 | 45.5/22.3
MM-VC 47.3/19.7 | 37.9/19.9 | 455/21.6 | 44.7/19.2 | 43.1/21.0 | 44.6/24.9 | 45.8/21.8 | 40.1/18.0 | 43.6/20.7
MMIJ-VC | 49.0/20.6 | 45.6/24.1 | 45.7/22.2 | 46.3/20.8 | 45.1/23.2 | 48.1/26.8 | 46.5/22.5 | 43.3/20.3 | 46.2/22.6

Table 1: 3DObjects: zero-shot pose estimation accuracy (Acc®/Acc(9:9).

aero bike boat bottle bus car chair table | mbike sofa train tv mean
KNN-VC | 37.75 | 3998 | 36.55 | 29.34 | 31.17 | 33.14 | 39.68 | 48.12 | 39.90 | 48.37 | 28.40 | 47.71 | 38.34
J-VC 35.65 | 36.62 | 35.57 | 57.72 | 33.71 | 33.03 | 37.08 | 49.90 | 36.77 | 55.07 | 34.66 | 55.13 | 41.74
MM-VC 36.60 | 40.30 | 35.34 | 37.44 | 40.71 | 33.97 | 39.43 | 48.07 | 35.16 | 51.09 | 36.22 | 49.88 | 40.35
MMIJ-VC | 34.42 | 37.79 | 36.66 | 56.42 | 36.11 | 32.47 | 36.32 | 49.81 | 37.81 | 54.32 | 38.49 | 57.40 | 42.33

Table 2: PASCAL3D+: zero-shot pose estimation accuracy (Accy q) for the whole dataset.

Figure 2: Zero-shot pose estimation examples: the first column shows the input im-
age (denoted by the red boundary) and the remaining columns show samples selected
for pose prediction.

classes, d(p;, ) is set equal to the maximal distance in the pose space.

To compute the absolute pose, a small set of the zero-pose samples from
the class C; with zero labels is selected and the relative distance to these sam-
ples in pose space allows to determine the absolute pose of a new sample.

Detection: We propose to couple the proposed method with the pre-trained
R-CNN detector [2] by re-scoring object proposals using the confidence
scores of the model. In the experiments, we show that the combined model
allows us to improve the performance of the detector and, in addition, esti-
mate the view point (the detection results are not presented in the abstract,
but will be presented at the workshop, due to space limitations).

Experiments: To stress that our approach is independent of the type
of labeling provided as pose annotations, we chose one dataset contain-
ing discrete labels (3DObjects [3]) and one with continuous labels (PAS-
CAL3D+ [5]) We evaluate performance of our method in two main exper-
iments: 1) the fully supervised case; 2) the zero-shot learning experiment,
where we exclude ground truth pose labels from training for one class and
evaluate the performance of the model for the same class. We perform this
experiment for all classes.

class Acc? Acc® | Acc99)
[1] 75.7 57.2 59.8 -
[3] 90.53/83.07 | 80.34/81.86 — —
KNN-VC 95.17 84.94 85.20 71.68
J-VC 97.35 89.92 91.65 80.84
MM-VC 96.14 89.87 91.69 82.79
MMIJ-VC 97.36 90.15 91.82 82.00

Table 3: 3DObjects: class recognition and pose estimation accuracy (%)

‘We compare our method with the state of art methods, as well as provide
our baselines to show the advantage of our final formulation in various tasks.
We use the following variants of our model for comparison: KNN-VC is a
simple k nearest neighbors baseline to show the improvement due to learned
metric in comparison to the original metric in the feature space, while in
MM-VC we learn one metric per class for pose estimation, as well as a
separate metric for class prediction. To show that joint learning for pose
and category prediction can be beneficial, we compare J-VC learned using
Eq. (2)-(4) and the full multi-metric model MMJ-VC, where we learn the
multi-metric model, described in Eq. (6)-(8).
3DObjects dataset: This dataset contains 10 object classes, where each
class has 10 instances that are presented in different views and scales. The
view space is discretized by azimuth angle ¢ into 8 intervals, and by el-
evation angle 0 into 3 intervals. We following the protocol of [3] in our
experiments to measure accuracy for azimuth Acc?, elevation Acc® and to-
tal accuracy Acc?:9) | as well as classification accuracy in Table 3 for the
fully supervised case. The learned metrics outperforms a simple KNN-VC
baseline both in recognition and in pose estimation, as well as, by far, out-
perform other approaches.

We evaluate the performance in the zero-shot pose estimation experi-
ment using the relative pose given by Eq. (9). The results are presented in
Table 1. Since objects in 3DObject dataset are very distinct, only general

features, such as rectangular form, can be transferred between categories
(see Fig. 2 — the similarity between the query object and the nearest neigh-
bors is mainly due to rough object form rather than due to details). How-
ever, we still are able to predict the pose for the objects from the novel
category about 3 times better then random. Our full multi-metric model
(MM1J-VC) gives the best performance, since it contains both the joint multi-
task learning objective and combination of shared and class-specific metrics.
Notably, MM-VC performs slightly worse than simple KNN-VC baseline,
which points to the key importance of joint multi-task learning for zero-shot
prediction.

class MedError Accre
KNN-VC | 61.70/62.72 | 35.74/37.69 | 49.76/50.76
J-VC 71.49/82.23 | 31.93/31.54 | 51.31/55.05
MM-VC 70.35/85.12 | 36.61/38.48 | 48.55/47.35
MMIJ-VC | 71.75/83.06 | 32.81/29.67 | 51.84/55.20

Table 4: PASCAL3D+: class recognition and pose estimation accuracy (MedError
is given in degrees) (results on the whole dataset/non-truncated and non-occluded
images only).

PASCAL3D+ dataset: The dataset contains images of 12 different cat-
egories from PASCAL VOC 2012 training and validation sets. For PAS-
CAL3D+ dataset, we use the distance in the pose space dp(pi,p2), as well
as two performance metrics, proposed in [4] for evaluation.

The results for the fully supervised case are presented in Table 4. As in
the previous experiment, J-VC and MMIJ-VC baselines perform better then
KNN prediction, however, MM-VC baseline performs poorly this time, that
suggests, that sharing appearance between categories, especially if there are
multiple categories with similar appearance, can be beneficial.

The results of the zero-shot pose estimation are presented in Table 2.
We achieve higher improvement compared to the results we have on the
3DObjects dataset. We attribute this to the fact, that PASCAL3D+ dataset
contains many categories that have similar appearance variation due to view-
point change, such as bike and motorbike or car and bus. Furthermore, al-
though KNN-VC still performs slightly better for some classes, for these
classes our model performs on par, while for the classes like train or bus,
the performance gain of the proposed approach is significant with respect to
KNN-VC.

Conclusion: We have presented a method for simultaneous class predic-
tion and pose estimation using learned metrics, that is able to generalize
to the novel classes at almost no cost. We have validated our method on
two datasets, and have shown that jointly learned metric outperforms sepa-
rately learned metrics for the fully supervised pose estimation as well as well
generalizes pose estimates for a novel category without pose labels. Fur-
thermore, we showed the multi-task joint formulation further outperforms a
single-metric formulation (especially for zero-shot).
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