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Abstract

The creation of training sets for supervised machine learning
often incurs unsustainable manual costs. Transfer learning
(TL) techniques have been proposed as a way to solve this
issue by adapting training data from different, but related
(source) datasets to the test (target) dataset. A problem in TL
is how to quantify the relatedness of a source quickly and
robustly. In this work, we present a fast domain similar-

ity measure that captures the relatedness between datas-
ets purely based on unlabeled data. Our method transfers
knowledge from multiple sources by generating a weighted
combination of domains. We show for multiple datasets
that learning on such sources achieves an average overall
accuracy closer than 2.5 percent to the results of the target
classifier for semantic segmentation tasks. We further ap-
ply our method to the task of choosing informative patches
from unlabeled datasets. Only labeling these paiches en-
ables a reduction in manual work of up to 85 percent.

Introduction
Supervised classification plays an important role for ex-
fracting semantic information from remote sensing imagery.
From statistical considerations, it can be expected that the
estimation of any complex model with high accuracy will
require large amounts of training data. While unlabeled data
are abundant and are already used successfully in unsuper-
vised and semi-supervised learning methods, they cannot
completely replace the dependence on labeled data. On the
other hand, the acquisition of high quality, densely sampled
and representative labeled samples is expensive and a time
consuming task. Transfer Learning (TL) is a paradigm that
sirives to vastly reduce the amount of required training data
by utilizing knowledge from related learning tasks (Thrun and
Pratt, 1998; Pan and Yang, 2010). In particular, the aim of TL
is to adapt a classifier trained on data from a source domain
to a target domain. The only assumption to be made is that
these domains are different but related. We are interested in
one specific setting of TL called domain adaptation (DA). DA
methods assume the source and target domains to differ only
by the marginal distributions of the features and the posterior
class distributions (Bruzzone and Marconcini, 2009). The
performance of DA depends on how the source is related to
the target (Eaton et al., 2008). From that point of view, DA
can be divided into two steps: find the most similar sources
and transfer knowledge from these sources to the target. In
this context, the major challenge in source selection is how to
measure the similarity of domains.

In this paper, we will address the problems of searching
for similar sources, also known as source selection, and of
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integrating the results into DA. As unlabeled data are abun-
dant, our proposed method is only based on similarity mea-
surements between the marginal distributions of the features
in the source and target domains. We apply our source selec-
tion method to two different data acquisition settings: domain
selection and domain ranking. In domain selection, given

a target domain and a list of candidate source domains, we
assign weights to these sources based on the Maximum Mean
Discrepancy (MMD) metric to the target. For these candidate
source domains, we assume that some labeled training data

is available from earlier surveys. We then apply multi-source
selection by transferring knowledge from multiple weighted
source domains simultaneously. Additionally, we extend the
approach for DA presented in (Paul et al., 2016) so that it can
benefit from multi-source selection. For the domain ranking
setting, we have to process many initially unlabeled target
domains while no training data is available. Using our multi-
source selection algorithm, our goal is to rank these domains
in terms of their informativeness. This information helps us to
select the most important domains for manual labeling, which
leads to a reduced effort for the generation of training data
while keeping classification error at an acceptable level. Fi-
nally, we propose an improvement of the MMD metric for the
application in source selection with many candidate sources.
This Asymmetric Maximum Mean Discrepancy is able to sig-
nificantly reduce the memory footprint for each source while
featuring a linear runtime complexity by exploiting the asym-
metric relationship between target and source domains. We
evaluate our methods on the Vaihingen and Potsdam datasets
from the ISPRS 2D semantic labeing challenge (Wegner et al.,
2016) and on a third, even more challenging, dataset based on
aerial imagery of three German cities.

Related Work

In our work, we use notation according to Pan and Yang
(2010). A domain D={X, P(X)} consists of a feature space X and
a marginal probability distribution P(X) with Xe X. A task for

a given domain is defined as 7={C, h(-)}, consisting of a label
space C and a predictive function h(-). The predictive func-
tion can be learned from the training data {x,, C}, where x,e X
andC.e C. We consider a target T, for which we want to learn
a predictive function h(x), and a source S, from which some
knowledge can be transferred. Both T and S are fully described
by their domains and their tasks. In our work, we consider at
least one source domain D, and only one target domain D for
the domain selection setting, and more than one target domain
for the domain ranking setting. There are different settings of
TL. Our focus is on DA, which is a special sub-category of the
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transductive TL setting (Pan and Yang, 2010). There are slight-
ly different definitions of the DA problem; we follow the defi-
nition of Bruzzone and Marconcini (2009) according to which
different domains only differ by the marginal distributions

of the features and the posterior class distributions, i.e., we
assume P(X)#P(X;) and P(Csl Xg)= P(C, | X,). From that point
of view, DA corresponds to a problem where the source and
target domain data are different, e.g., due to different lighting
conditions or seasonal effects. However, the domains must be
related, i.e., these differences must not be so large that transfer
becomes impossible. In this scenario, finding a solution to the
DA problem would allow to transfer a classifier trained on one
set of images where training data are available (D,) to other
images (D) without having to provide additional training data
in Dy. This is different from the problem that the training set is
non-representative, e.g., due to class imbalance, Such algo-
rithms are known as sample selection bias or covariate shift
correcting methods, as in (Zadrozny, 2004; Sugiyama et al.,
2007). Zhang et al. (2010) adapted the classifier to the distri-
bution of the target data by weighing training samples with a
probability ratio of data from the source and target domains.
However, this approach only deals with binary problems and
applications other than image classification.

Pan and Yang (2010) subdivide DA into two groups ac-
cording to what is actually transferred: feature representation
transfer and instance transfer. Methods of the first group using
feature representation transfer assume that the differences
between domains can be mitigated by projecting both domains
into a shared feature space in which the differences between
the marginal feature distributions are minimized, e.g., by using
feature selection (Gopalan et al., 2011) or feature extraction
(Matasci et al., 2015). Some of the methods in this group em-
ploy a graph matching procedure to find correspondences be-
tween domains (Tuia ef al., 2013; Banerjee et al., 2015). These
methods need to contain the correct matching sequence among
the possible matches or labeled samples across domains to
perform well. Cheng and Pan (2014) propose a semisupervised
method for DA that uses linear transformations for feature
representation transfer. However, this method also requires
training data from the target domain. Methods that assume
that differences can be found in the marginal distributions
mostly fall into the second group of DA algorithms, based on
instance transfer. These methods try to directly refuse training
samples from the source domain, successively replacing them
by samples from the target domain that receive their class
labels (semi-labels) from the current state of the classifier.

Methods for instance transfer have been used in the clas-
sification of remotely sensed data, e.g., in (Acharya et al.,
2011). Acharya ef al. (2011) train the classifier on the basis
of the source domain and combine the result with those of
several clustering algorithms to obtain improved posterior
probabilities for the target domain data. The approach is
based on the assumption that the data points of a cluster in
feature space probably belong to the same class. Bruzzone and
Marconcini (2009) present a method for DA based on instance
transfer for Support Vector Machines (SVM). In Paul et al.
(2016), this idea was adapted to logistic regression, which has
a lower computational complexity in training for multiclass
problems. Durbha ef al., (2011) show that methods of TL for
classification of remotely sensed images can produce better
results than a modification of the SVM. A DA method using
logistic regression in a semi-supervised setting combined with
clustering of unlabeled data has been presented in (Amini and
Gallinari, 2002). Training is based on expectation maximiza-
tion (EM), and the semi-labels of the unlabeled data are deter-
mined according to the cluster membership of EM. In contrast
to our DA technique, that method assumes the labeled and
the unlabeled data to follow the same distribution.
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The detection of negative transfer is of vital importance for
TL. In (Bruzzone and Marconcini, 2010) a circular validation
scheme was proposed to detect negative transfer after adapting
the classifier. An alternative approach, source selection, would
try to detect a relevant source prior to applying TL, which, of
course, requires the availability of multiple source domains.
Most work in this area uses a distance measure between the
marginal distributions to measure the similarity between do-
mains. Such distribution distances are well known in statistics,
where the problem is mostly solved for 1D feature spaces. Most
research has therefore focused on extending these metrics to
multivariate data by using non-parametric models. Examples for
such measures are the Kullback-Leibler Divergence (Sugiyama
et al., 2007), the Total-Variation Distance (Sriperumbudur et al.,
2012) and its approximations, the Maximum-Mean-Discrepancy
(Gretton ef al., 2012; Chattopadhyay et al., 2012; Matasci et al.,
2015) and A-Distance (Ben-David et al., 2007). These approach-
es are kernel-based and usually scale well to high-dimensional
data, but they may be computationally expensive. Therefore,
another focus of research has been on reducing computational
requirements and an improved regularization by careful kernel
tuning (Zaremba et al., 2013; Sriperumbudur et al., 2009).

Chattopadhyay et al. (2012) proposed a multi-source DA
algorithm for the detection of muscle fatigue from surface
electromyography (SEMG) data. The data show a high vari-
ability between individual subjects, therefore not all subject
data should be considered when learning an individualized
fatigue detector for a new subject. A synthesized source is
generated as a weighted combination of all candidate sources
using a MMD-based domain distance. The method has cubic
complexity in the number of candidate sources, which may
make it slow for cases with many available sources.

Besides TL, active learning has also been an active research
topic with the aim to reduce manual labeling costs (Settles,
2010). Active learning methods select the most informative
samples from an initially unlabeled training set which are
presented to a human operator for labeling. Further samples
may then be selected while taking the user feedback and the
peculiarities of the classifier into account. Some ideas were
proposed to utilize active learning for DA (Tuia et al., 2011).
While our domain ranking setting bears some similarity to ac-
tive learning, our approach works at a coarser level and does
not incorporate a user feedback loop, resulting in a much
simpler user workflow and faster computation times.

In this paper, we present an unsupervised and a super-
vised method for source selection based on different distance
metrics for domains. The work is inspired by (Chattopadhyay
et al., 2012), but we use an approximate optimization with
linear run-time complexity and propose a method for tuning
the kernel hyperparameter automatically. The methods de-
liver a synthetic source as a weighted combination of similar
sources, designed to reduce a distance between the distri-
butions of the synthetic source and the target domains. We
also propose variations of our distance metrics that are able
to exploit the asymmetrical relationship between target and
source domains in TL. Furthermore, we extend the algorithm
in (Paul et al., 2016) so that it can deal with multiple sources.
Finally, we apply our proposed methods to rank a set of target
domains in order of their informativeness. Only the most
informative domains need to be labeled manually in order to
generate high quality semantic segmentation for all targets.

Domain Adaptation

We start this section with a short description of the work from
(Paul et al., 2016) before presenting our improvements in the
next section.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



DA Approach

We use multiclass logistic regression (LR) as our base classifier.
LR directly models the posterior probability P(Clx) of the class
abels C given the data x. We transform features into a higher-
dimensional space ®(x) in order to be able to achieve non-lin-
ear decision boundaries. In the multiclass case, the model of
the posterior is based on the Softmax function (Bishop, 2006):

exp (w}; e (x))

2 5D (w? X (x))

where w, is a parameter vector for a particular class label C*to
be determined in the training process for the class k € K. For
that purpose, a fraining data set, denoted as TD 1is assumed
to be available. Initially, it contains only training samples
from the source domain, each consisting of a feature vector x,,
its class label C, and a weight g,. In the initial training, we use
g,= 1 for each sample n e {1, ..., N}, but in the DA process,
the samples will receive individual weights indicating the
algorithm’s confidence in the labels. In training, the optimal
values of the parameter vector w (collecting the parameter
vectors w, for all classes k} given TD are determined by opti-
mizing the posterior (Vishwanathan et al., 2006):

P(C:Cklx): (1)

p(w I ﬁ) o p(w) -Hp((]n =ck Ixn,w)gll‘an (2)
nk

where q,; is 1 if C, = C* and 0 otherwise, p(C = Clx,,w) is de-
fined in Eq. (1) and p(w) is a Gaussian prior with mean Wwand
standard deviation ¢. Compared to standard multiclass LR, the
only difference is the use of the weights g, (Paul et al., 2016).
We use the Newton-Raphson method for finding the optimal
parameters w by minimizing —log(p(w | TD )) (Bishop, 2006).

Our aim is to transfer the classifier trained on labeled
source domain data to the target domain in an iterative pro-
cedure. Our initial classifier is trained on the training set TD*
containing only source data. In each further iteration ; of DA a
predefined number p;; of source samples is removed from and
a number p, of semi-labeled target samples is included into
the current training data set TD'. Thus, in iteration i, the cur-
rent training data set TD' consists of a mixture of N; source
samples and N, target samples:

D' = {(XS,F: Cs,r:gs,r)}i\i U {(XT,z:éT,I? gTJ)}N%

=1

The symbol C, denotes the semi-Iabels of the target samples,
which are determined by applying a criterion based on the
class labels of the k nearest neighbors (knn) of a sample in fea-
ture space. If the most frequent class label among the knn of
an unlabeled sample is consistent with the predicted label ac-
cording to a current state of the LR classifier, it is considered
a candidate for inclusion into TD! The p, candidate samples
having the shortest average distance to their k nearest neigh-
bors will be added to TD'. We first remove source samples
that are most distant from the decision boundary starting with
the samples showing inconsistent class labels and continu-
ing with samples with consistent labels. As i is increased, N
becomes smaller and N; increases, until finally, only target
samples with semi- labels are used for training.

At each iteration I, we have to_define sample weights gTD
€[0,1] for all training samples in TD', where

{gé“T)} - {{ggr}fl U {gh}jﬁ} . For simplicity, we refer to
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the weight of a sample as g 7D,n)» € {1, .., N} with N'=| D
the number of elements in that tralnmg ‘set if it does not mat-
ter whether the sample is originally from the source or from
the target domain. The weight indicates the algorithm’s trust
in the correctness of the label of a training sample. The weight
function used for determining g/ (TD,n) depends on the distance
to the decision boundary: the hlgher that distance, the higher
is the weight; a parameter h models the rate of increase of the
weight with the distance (Paul et al., 2016). Having defined
the current training data set TD' and the weights, we retrain
the LR classifier. This leads to an updated parameter vector w
and a change in the decision boundary. This new state of the
classifier is the basis for the definition of the training data set
in the next iteration. Thus, we gradually adapt the classifier to
the distribution of the target data.

Multi-Source Logistic Regression DA

In this section, the method previously described is adapted
for using data from multiple source domains for training. To
formally state our problem, we define our current training
data set as follows:

ISI N,

0" = (x5 iCs i85 )}

om0
Ep j Tf reritlf,
s=1 =1
where S or T describe a set of source or target data sets, re-
spectively, and IT| = 1.

Again, we refer to a partlcular sample in TD' by its index
n in TD'if we are not interested in the domain it comes from.
We use the defined training data set TD!in our multi-source
DA approach, but we use different definitions of the sample
weights. One modification of sample weights should decrease
the weight of uncertain samples; the other one is required
to deal with prior weights assigned to the individual source
domains (See the next Section).

Sample Weights

The individual weights for the training samples should
indicate the algorithm’s trust in the correctness of the semi-
labels, but the definition of weights in (Paul et al., 2016)

only depended on the distance of a sample from the decision
boundary. It may happen that a semi-label changes in the it-
erative DA process, which would imply that the semi-label is
uncertain; semi-labels not having changed for many iterations
should be trusted more than others. Here, we introduce an
adapted definition of the sample weights as shown in (Chang
et al., 2002; Bruzzone and Marconcini, 2009; Matasci et al.,
2012) to model the trust in a sample in TD as a function of the
number of iterations j for which its semi-label has remained
unchanged (Figure 1):

97
LA
gr
0 jrnvas - 7
Figure 1. Sample weight function according to Eq. (4),
assuming constant gi during the adaptation.
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g;j o g; . ( max _g;z) ,]-z ,gmax -
(jmax _ 1)2

In Equation 4, g is the weight of sample n in the current
adaptation step i according to the original distance-based
weight function (Paul et al., 2016), g,/ is the new weight of
that sample, i defines the number of iterations for which
the weight of a samples is allowed to increase quadratically
with j, and g~ is the maximum possible sample weight. If
only one source domain were considered, the weight for each
training sample n in TD*would be g/, i.e., the algorithm out-
lined in the previous Section woulgqbe applied using the new
definition of weights.

Domain Weights

In the context of multi-source selection, we introduce an
individual domain weight z for every source domain s used
in the DA process. The domain weights allow us to obtain

a synthesized source S (See the next Section) from multiple
sources that is more similar to the target domain than any of
the original ones. The domain weights remain constant during
the adaptation procedure. For a sample n in the current train-
ing set TD' taken from source domain s, the weight used in the
DA process is g = @ ns, where g ! is defined in Equa-
tion 4, whereas ‘a'sample n with a semi-label taken from the tar-
get domain has only the weight g /. Thus, the weights of the
source-domain samples are affected by the similarity of the cor-
responding domain to the target domain, placing a higher trust
into samples that come from more similar source domains.

Multi-Source Selection

The goal of source selection is to improve the prospects of DA
by choosing a source S that is, in some sense, most similar to
the target domain. Naturally, one should prefer sources that
produce similar decision boundaries as the target task. There-
fore, the selection criterion should be based on ¢(hg,TD,), i.e.,
the relative classification error (€ [0,1]) on the target data,
given the predictive function hy of the source task:

§: argminsege(hs,ﬁT) (5)

The main difficulty lies in the fact that estimating the clas-
sification error requires the class labels of the target domain
to be known. Here, we introduce a theoretical framework and
outline an algorithm that allows us to quickly find approxi-
mate solutions while requiring much less information. We
first design two complementary domain distance functions,
which we call dg,, and dp,. The function dg,, measures a
supervised domain distance in the sense that only class labels
in the source domain need to be known, whereas d,;,, does
not require any class labels at all. We refer to d,, in places
where either of these functions could be used. Equation 5
can then be approximated by S =argming_(d;,(.) . Our main
contribution is the extension of these domain distances to the
transfer from multiple sources while having a linear run-time
complexity. In addition, we also developed variants of these
domain distances that are able to capture the often asymmet-
ric relationship between the target and source domains in TL.
Finally, we also show how all critical hyperparameters can be
tuned automatically in an efficient manner.

Similarity of Domains

We derive our approximation of Equation 5 in several steps.
Using the results of Ben-David et al. (2007), an upper bound
for the classification error can be given as:
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elh._:.ﬁr)Ss(hS,Y_’ﬁs)+dA(ﬁT,Tﬁs)+y (6)

The first term corresponds to the classification error on the
source task. The term d,(TD,,TD,), called A-distance, de-
scribes a distance between the marginal feature distributions
of the source and target domains. The third term, y, encap-
sulates to which degree the DA assumption holds. The exact
value can only be computed if class labels in the target task
are available. but for related datasets, this term should only
take small positive values. Assuming that y is unknown yet
constant over the dataset. the upper bound gives us a defini-
tion for dgp, according to dgp, = ¢(he,TDG)+d,(TD,,TD;). In the
following, we define d, and derive a more computationally
friendly way to estimate this distribution distance. In (Ben-
David et al., 2007), the A-distance is defined as:

d 4(TD7,TDs) = 2(1-2¢(hy 5. TDT.15)) (7)

The term e(hy;, 5, 7Dy, ) describes the classification error
for a classifier discriminating between feature vectors from
the source and target domains. In the referenced paper, only
signed linear classifiers such as SVMs or logistic regres- i
sion models were considered. Evaluation of the A-distance
involves the training of such a classifier for each candidate
source, which has a high computational complexity. Further-
more, linear separability of the source and target domains is
explicitly assumed. It is therefore desirable to find an ap-
proximation to the A-distance that displays more favorable
properties. Gretton et al. (2012) independently proposed the
Maximum Mean Discrepancy (MMD) as a general distance
function between probability distributions:

dimm (ﬁﬂﬁs) = E[(¢(XT) ‘¢(Xs))2J ” |

=E[k(XT,X'T)]—ZE[k(XT,xS):]+E[k(xs,x'sﬂ

where x and x” are statistically independent samples from the
same distribution. The MMD computes the distance between the
means of the probability distributions in a Reproducing Hilbert
Kernel Space (RKHS). The RKHS is uniquely defined by either a
feature space mapping ¢(x) or its kernel function k(x,y). It was
shown by Sriperumbudur et al. (2012) that the relation

d 4(TDr,TDs) = 2dymp(TDr, TDs) (9)

holds for positive bounded kernels such as the Gaussian kernel:

x—v2
kHBF(X:Y) =eXP[* 527 ]
20
Evaluation of the MMD can be done by replacing the expec-
tations in Equation 8 with their empirical estimates. A naive
estimator would have a run-time complexity of O(N-Ny), |
where Ny and Ny are the numbers of features available in i
the target and source domains, respectively, which becomes
untenable for large training sets. A much faster linear-time
estimator d;,p Was proposed by Gretton et al. (2012). Assum-
ing M= N; = N, it can be stated as:

d%M]\/ID (ﬁT} ES)

2 M2 M M/2 (11)
= H zlk(XT,Zr’ XT,2r~1) - Zlk[XT‘T’ XS,r) + Elk[XS’zr, XS,Zr—lJ
= r= r=
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s°

Figure 2. A synthesized source § is formed as the convex combination of candidate sources S°.

Finally, replacing d , by djynp using Equation 9 leads to the
definition of our supervised domain distance:

dSDA(Y—;ﬁT,ﬁS)=8(hs,ﬁs)+2dLMMD(ﬁT5TBS) (12)

Assuming the classification error to be approximately con-
stant over all candidate sources, we obtain the unsupervised
distance:

dupa (TD1,TDs) = 2dpngp (TDT, TDs) (13)
Asymmetric Domain Distance

The described domain distances based on the MMD, see
Equations 12 and 13, are theoretically motivated and as-
sume a symmetric relationship between the source and target
domains, e.g., if a classifier learned from TD; performs well
on TD,, then the reverse must also be true. In reality, this as-
sumption may not always hold. For instance if TD;c TDg we
should expect that a classifier learned on S will perform well
on T as all classes are well represented by the training data.
Yet, the distributions are measurably different, which can

be observed by a high MMD measure. We therefore propose a
modification of the MMD which is aimed at directly measur-
ing whether all regions in T are represented in S, while being
invariant to those regions in S that are conversely not repre-
sented in T. First, let us re-examine the MMD from Equation 8:

dIZVIMD (ﬁ’f‘,ﬁs) = E[k(XT,X'T)] = ZE[k(XT,Xs):|+ El:k(XS’X'S)}
= (E[kxr, x'7)] - E[k(xr,x3)])

Target
—l—(E[k(Xs, X'S)] -E [k(XS"XT)])

-

(14)

Source

It should be noted that this is valid for the Gaussian kernel
since kpgp(%,y) = kege(y,%). The term Elk(xg, x's] describes the
compactness of the source domain, which is mostly irrelevant
for measuring the relatedness of a source. We therefore drop
the entire second part of this equation. The remaining terms
describe the average intra domain similarity (7« 7) and inter
domain similarity (T S), respectively. We argue that for
each sample in the target domain to be well represented, a
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related source should contain at least one sample that is not
significantly more dissimilar than its next most similar target
sample. Therefore, we propose to replace the simple average
in the MMD with a maximum operator over similarity scores:

Nr
e 1

d= TDr,TDs)= — max klxrp;, x'7;
AMMD( ) NT _1]'6[1..NT] ( T,i T,])

B
N (15)
-— ) max k(XTJ-,XS’]-)
NT P ]e[l_.NS]

A disadvantage of this formulation is that in order to find
the most similar sample we always have to look at the entire
training set. Therefore, Equation 15 has a quadratic run-time
complexity. Yet, suppose we are content with finding only
the g% most similar samples and we further also allow a
failure probability p for locating such a sample. Then, it can
be shown that it is sufficient to only look at a random subset
of size N, > 10840 »(P), irrespective of the underlying data
distribution or sample size (See Appendix A for the proof}.
Consequently, Equation 15 can be approximated without sig-
nificant loss of accuracy using a procedure having linear run-
time complexity. This result also has the benefit that a source
selection system based on our AMMD never has to store the
full source training sets to perform queries. In fact, for each
source only N, samples have to be held in memory, where
N._.. is typically less than 100. Using these results, one can
use the metric d,,,,, to obtain modified (asymmetric) versions
of the domain distances dg,, and dyp,:

dA_SDA(T_DT,ﬁS) = S(hs,ﬁs)ﬂ'ZdAMMD(TBT,ﬁS) {(186)

da_ypa(TDr, TDs) = 2d oy (TDT, TDs) (17)

Convex Combination of Domains

In general, we have to expect that none of the candidate
source domains Se§ is a perfect match for the target domain.
Nonetheless, the target marginal distribution p,{x) might be
much closer to the subspace spanned by the convex combina-
tion of the source marginal distributions (Figure 2). Any point
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in this subspace represents a valid marginal distribution and
can be parametrized as:

Is|
ps, (x)= Y 7ips () (18)
s=1

i
given a source weight vector z = [71' gloeer T S‘Sl:l satisfying

S|
the constraints 7. = O,Znss =1. By definition (Equation 18),

s=1
the distribution pg (x) is a mixture of the source marginal

distributlic])ns. The weighted training set
S

TDs, = U{Xss iCgeimg: | ii

s=1

is therefore a representative sample of this distribution. The
weights can be intuitively understood to mean that each sam-
ple from source S¢S is counted as 7 such samples. As an
important intermediate result, we propose extensions of the
linear-time MMD estimator (Equation 11) and our asymmetric
MMD (Equation 15) to a weighted union of source training sets:

di\dMD (ET, ﬁsﬂ )

M/z2 IS|

| M
= % zk(XT,Zr:XT,Zr—l) _Zﬂ:su 2]( (XT,r’ Xsu’r)
1 r=1

r=1 u=

S| sl

M
DIPILTID Y LR
r=1

u=lv=u+1

(19)

S| M/2

2
+Z” s zk (XS“,Zr’ Xs“,21—1)
u=1 r=1

NT
— 1
d? TD7,TDg )= — max k(xr . X'+
AMMD( ﬂ) Ny e je[1.Ny] ( T.i T’])
R 0

_NLTZESHE- [max k(xT,l-,xsu,].)

i—1 J€ 1"Nsu :|

In the next section, we present a fast and greedy optimiza-
tion scheme that minimizes d,,, w.r.t. 7.

Fast Synthesis of Source Domains by Boosting

Convex representation problems, like the one in Equation 18,
are related to dictionary learning. The Iterative Nearest Neigh-
bor (INN) algorithm (Timofte and Van Gool, 2012) is a recent
method that approximately solves such problems in a greedy
fashion. The solution at iteration L is given as:

2
p§(x)= Y w'pg (x), (21)
=1
where the iteration weights are computed as:
y)
wl = 7
(1+4) (22)

for a fixed parameter 1. In order to find the next solution
PE(x), we select a source which minimizes the representation
error to the target domain according to our domain distance:
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The same source may be chosen multiple times at differen
iterations. The source weights can be derived from the itera-
tion weights as follows:

I

|

Wo- (24

ﬂ:Ssz

1{5; =S§ } :
=1

Originally, the INN algorithm was designed to work on
vectors in Euclidean spaces. When interpreted in the space o
probability distributions, the procedure has strong parallels
to a non-adaptive variant of the boosting paradigm, whose
most well-known implementation is AdaBoost (Schapire and
Singer, 1999). Similar to boosting, the svnthesized source S,
is a weighted combination of weaker approximations. In addi
tion, the update step in Equation 23 has the effect to steer the
optimization successively to prioritize parts of the distribu-
tion that are not yet well represented while also attenuating
overrepresented parts.

The sum 2;1 w! approaches 1 while the iteration weights

w' become smaller and smaller. We can therefore stop the
algorithm after L iterations such that zf_lwl > f while

avoiding large approximation errors. From Equation 22 follows

__log(1-p)
L= fog(1+2) i

For typical parameter values = 0.9, 1 = 0.5 only, and L =
6 required iterations. The run-time complexity of the entire
multi-source selection algorithm using diupaaupa Can be given
as O(L*[S|-M). The same result for our supervised variants
dispaa spa Teads as OL* 1 S1-M-A{IS|-M)) and additionally de-
pends on the term f{IS1-M), which describes the complexity
of the classification algorithm used to estimate the first term
in Equation 12.

Algorithm 1 Kernel Bandwidth Estimation

$-1.61803398875
(L,R)-(0, m2)
(A.B)-(R—(R-L)/¢, L+ (R - L)/¢)
Jor i = 1. Maxlter do
far & (TD,, TD §) with o = tan(A)
fo=p (TDL,TD) with o = tan(B)
if f,<0 then
R-A
else if f, < f, then
R-B
else
L-A
end if
(A,B)-(R-(R-L)/¢, L+ (R—L)/¢)
end for
return o, = tan ((L + R)/2)

Kernel Bandwidth Estimation

The Gaussian kernel has a single hyperparameter o, its band-
width. It was shown by Sriperumbudur et al. (2009) that the

discriminative power of the MMD is maximized by maximiz-

ing dyyp with respect to o:
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dl%/[—ﬁﬁ (TET, ﬁs) = max dipp (ﬁT,Tﬁs) (26)

a€(0,00)

Using the results by Shestopaloff (2010), we can show
that this optimization problem has exactly one maximum at
o_.. and at most one minimum at o,,,. Furthermore, if g,
exists then o, ., < 0,,;, holds. Finally, d,np will tend towards
zero for both -0 and -, We can therefore conclude that
dyo(0,,,,)<0 if a minimum exists. Whereas theoretically, the
MMD only can take positive values, this case can still occur for
very similar domains due to errors in the empirical estimates
of the expectations. The general shape of the function
dy 5 is shown in Figure 3.

We solve this optimization problem using a Golden-Sec-
tion-Search (GSS) (Press, 2007) (see Algorithm 1). The GSS
searches the maximum of a strictly unimodal function. We
modified the GSS to handle the case where a minimum o,,,,
exists. The value range (0,0) is mapped to (0,z/2) using the
atan function. In our experiments, the algorithm typically
converged in less than 10 iterations. Our empirical evaluation
in the Experiments Section shows that the same approach is

also valid for our asymmetrical MMD.

Improving Robustness by Bootstrap Aggregation

As all empirical estimators, our MMD estimators have a non-zero
estimation variance which may result in a suboptimal solution z.
We propose to reduce this variance by averaging & over multiple
independent runs of our multi-source selection algorithm. Each
run is performed on a bootstrap sample of the training sets 7D
and TD;. Bootstrap sampling describes a procedure where a new
sample is generated using independent draws with replacement
from an input sample. The statistical properties of bootstrap
sampling are described in detail in (Hesterberg et al., 2003).

Ranking of Source Domains

The domain ranking setting might resemble a more relevant
workflow for the supervised classification of remote sensing im-
agery than source selection as previously presented. We assume
that we have to process a batch of E images for which initially
no training data is available. In order to create some training data
we have to label some of these images manually. Obviously, we
do not intend to label all of them. In this setting all images can
be considered as target domains T.e T, while only some of them
will also be used as source domains S, for our source-selection
algorithm. Our goal is to find a small subset S, that will be suf-
ficient to achieve acceptable classification results. A reasonable
workflow could be to label source domains sequentially, training
a classifier whenever a new source domain is added and apply-
ing that classifier to all target domains; a visual inspection of

the results could guide the decision when to stop labeling new
domains. A domain ranking algorithm must therefore be able to
compute an ordering of the domains of the batch in which the
most informative domains are placed early. For computational
reasons we have
chosen to restrict

1.00
0.751
0.50
0.251
0.00
-0.25

Omax

MMD

W’

o
Figure 3. General shape of the optimization problem for hyper-
parameter estimation. The optimal ¢ can be found at o,,.

distribution. At each step, we select a new sample that is similar
to many other samples while also being dissimilar to already
selected ones. Due to its formulation as a kernel method, kernel
herding is flexible enough to be adapted to the domain rank-
ing problem. Only a kernel matrix K needs to be defined which
encapsulates a pairwise similarity measure between domains.

A simple kernel matrix could be directly constructed from the
MMD as

k%MD =1-dymp (TETI.,ET/) . While this simple approach

typically produces good results, we have determined em-
pirically that it can be far from the optimum if less than five
sources are to be selected. Therefore, we propose a more elab-
orate method to supersede the simple k;’ MD omain kernel.
We first note that the source weights z from our multi-source
selection algorithm also describe a domain similarity, as more
related sources are associated with larger weights. To construct
K we first apply multi-source selection to each T, using any of
our unsupervised domain distances (d;yps 4.ups) While using all
other domains as candidate sources. We define the e* column
vector of K as the source weight vector ng for the €® domain.
We also have to consider self-similarity of domains by set-

ting the main diagonal of K to 1. The kernel herding algorithm
then starts with an empty set S, of selected source domains. At
each iteration the next most informative source domain S is
chosen as:

Sse]ect = argmax

T,eT\S,

1 1
i D ke ~Ta Y k| @7
T,eT S, €S,

and added to S,. The main result of the algorithm is the order
in which datasets should be selected for labeling so that they
can serve as source domains.

Experiments

Test Data and Test Setup

Our experimental evaluation is based on three datasets (see
Figure 4). Two of them are the Vaihingen and Potsdam da-
tasets from the ISPRS 2D semantic labeling contest (Wegner

our research to
greedy algorithms.
We use a variant of
the kernel herding
algorithm by Chen
et al. (2012). Ker-
nel herding greed-
ily selects a small
representative
super sample from
a larger sample

of an unknown

.

(a) Vathingen (b) Potsdam

|

(e) Nienburg

(c) Buxtehude {d) Hannover

Figure 4. Details of orthophotos of all datasets used in the experiments.
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et al., 2016). The Potsdam dataset was resampled from 5 cm
to a ground sampling distance (GSD) of 8 cm to reduce the
computational burden. Only patches for which a reference
is available were used in our experiments. A third dataset,
referred to as 3CITYDS, consists of three regions of German
cities of varying size, degree of urbanization, and architecture
(Buxtehude, Hannover, Nienburg)'. This diversity produces
much more pronounced differences between domains. Each
region covers an area of 2x2 km? but is evenly split up into
nine patches. The reference data for the 3CITYDS dataset was
generated manually based on the image data. For all datasets,
both orthophotos and digital surface models (DSM) generated
by image matching are available. The properties of all datasets
are given in Table 1. Finally, we also consider a fourth data-
set. Combined. which is the union of the Vaihingen, Potsdam,
and 3CITYDS datasets.
All experiments are based on a pixel-wise classification of

the input data into the four object classes building, tree, low

egetation. and impervious surface. The impervious surface
cl dla 55 also includes clutter and cars. Furthermore, we used the
same feature space for all datasets. Under this constraint, we
selected the five most discriminative features using a Random
Forest-based feature selection method (Breiman. 2001) from a
pool of spectral. structural. and texture features. We settled on
the normalized difference vegetation index (NDVI). normal-
ized digital surface model (NDSM) and the pixelwise red,
green and near infrared spectral components.

Table 1. Dataset properties. GSD: ground sampling distance.
R/G/B/T: red / green / blue / near infrared band; patches:
number of patches per data set; features / classes: numbers of
features used / classes discerned in classification

Dataset GSD Channels Patches Features Classes
Vaihingen 8 cm RGI 15 5 4
Potsdam 8 cm RGBI 23 5 4
3CITYDS 20 cm RGBI 27 5 4

In this section, we present an experimental evaluation for
two different data acquisition settings. The first, domain selec-
tion, corresponds to a setting in which only one new target
image needs to be classified while large quantities of labeled
images are already available from earlier surveys. For the do-
main ranking setting, we assume that a large amount of target
images has to be classified and that initially no training data is
available, so that domain ranking is applied to determine which
images should be labeled to serve as source domains. In all ex-
periments, the evaluation is based on metrics derived from the
overall accuracy (OA), i.e., the percentage of correctly classified
pixels when comparing the classification results to a reference.

Domain Selection

A successful source selection should be able to find related
sources and reduce the expected classification error. The eval-
uation consists of two parts. First, we analyze our proposed
multi-source selection method. Our method is applied to

each patch (=T) to synthesize a source S using all remaining
patches of the dataset as candidate sources. For the domain
selection setting, we assume that these candidate sources are
fully labeled. We examine several source selection strategies.
Single source selection selects only one source domain that
has the lowest domain distance to the target domain while
multi-source selection utilizes labeled samples from all source
domains using source weights as previously described. We
examine both strategies in combination with both domain
distances digp, ypa)-and their asymmetric variants dis gpa a-upar-

We compare these methods to two simple reference meth-
ods: Random Source and All Sources. Random Source selects
a single source randomly from all candidate sources. All
Sources, on the other hand, uses all sources and assigns them
uniform source weights. In the first set of experiments, we
are mainly interested in the performance of the synthesized
source on the target task, so that classification is performed
using multi-class logistic regression without DA, but using
the source weights 7 to weight the samples.

In our second experiment, we enable the DA extension
for our classifier, applying it to a synthesized source S gener-
ated by our unsupervised asymmetric multi-source selection
algorithm using only the 1 to 3 sources featuring the largest
source weights.

Source selection and DA are applied using pixels on a
regular grid of size 10 px to 30 px to reduce spatial depen-
dency; the grid size was adapted to the GSD and the patch
size of the individual datasets, thus using only about 0.25
percent of the data in these processes (while using all data
for evaluation). For the source selection, we selected about
80 percent of these pixels per patch for each bootstrap run.
For the logistic regression classifier, we applied a polynomial
expansion of degree 2. The entire set of parameters used for
DA is given in Table 2, whereas Table 3 shows the parameters
used for source selection. The DA parameters were tuned
empirically on a small random subset of patches across all da-
tasets. The same parameter values were used for all datasets
without further tuning. The source selection parameters are
non-critical and were set to achieve a good tradeoff between
speed and performance. As source selection has some random
components, each experiment is repeated ten times, and we
report average quality indices.

Table 2. Parameters used for the DA method previously
described. o,, op,,: Weights for the gaussian priors for
regularization used for training the initial classifier and in the
DA process, respectively. pg, p,: number of samples per class
for transfer and elimination. KNN: number of neighbors in the
KNN analysis for deciding which target samples to 1nc1ude

for training. h: parameter of the weight function g5 . (Paul et
al., 2016). ">, gps™, gp.y : parameters of the welggt igunction
in Equa’uon 4, in case of gn* for source and target domain,
respectively.

max max
Oy Opa Pk Pa KNN h jmax gps 8pPT
35 15 30 30 19 0.7 200 1.5 0.9

Table 3. Parameters of multi-source selection. MaxIter GSS:
Maximum number of iterations of Golden-Section-Search.
INN 1: parameter of the weight function in equation 22. INN
B: threshold for the sum of weights for generating a synthetic
source domain. Bootstrap runs / size: number of bootstrap
runs for synthetic source generation and number of samples
used in each run, respectively. N, . number of samples used
to determine the asymmetric domain distance.

MaxIter GSS INN1 INN S Bootstrap Runs
10 0.5 0.9 10

Bootstrap Size N,

max

5000 60

1. Source: Extract from the geospatial data of the Lower Saxony surveying and cadastral administration, ©201 3“ LBLN

256 May 2018

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING




Percentile

Percentile

Percentile

4

AOA [%]
(a) Vathuingen

|

icm [%]
(b) Potsdam

svEsewss

ADA %]
{c) 3CityDS

AOA [%]

L T T .

o

SOA Bt

YDA MUt -

A

AUDA Singie
- AUDA M
ASDA Muin

is

5
i

Figure 5. Source selection results. AOA: difference in overall accuracy compared
to a classifier based on target training data. Percentile: the percentage of patches

in the data set for which AOA is smaller than the value on the abscissa. Example
(Vaihingen, All Sources): for 25% of the target patches the loss in OA is larger than
3% (AOA > 3%).

Table 4. Source selection results for different variants of the algorithm as previously
explained. Mean AOQA: Average loss in overall accuracy when compared to a

classifier based on target training data in 10 test runs (lower is better). STDEV:
standard deviation of AOA over 10 test runs.

UDA A-UDA UDA A-UDA SDA A-SDA

Random All Single Single Multi Multi Multi  Multi

Vaihingen Mean AOA 4.4 2.2 2.5 2.7 2.1 2.3 2.5 2.3
Stdev 2.9 1.3 1.5 1.6 1.3 1.3 1.4 1.3

Potsdam Mean AOA 6.2 3.1 34 3.1 2.5 2.6 3.3 2.5
Stdev 5.9 3.5 3.3 2.4 2.3 2.3 3.0 24

3CITYDS Mean AOA 266 10.6 2.6 2.7 2.3 2.2 3.4 2.3
Stdev 22.5 5.0 2.8 2.8 2.8 2.7 3.3 2.6
Combined Mean AOA 205 7.5 3.2 2.8 2.5 2.3 3.3 2.4
Stdev 15.6 7.4 2.9 2.6 2.5 2.3 2.8 2.2

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Domain Ranking

For this experiment, we evaluate our
proposed domain ranking algorithm.
The goal is to achieve a high overall
accuracy while only using sources from
a small set of candidates, thus reducing
the work related to manually labeling
these sources. Therefore, we only use
the most informative domains as source
candidates as defined by the domain
ranking produced by the kernel herding
algorithm, Previous experiments have
shown that single source selection with
our new asymmetric domain distance
(d4.upa) is competitive with our best
multi-source method while also being
much faster to compute. For this reason,
we ran the domain ranking experiments
using this source selection method only.
To give a context to our results, we also
provide an upper and lower bound of
the average overall accuracy for the
datasets. When only a single labeled
source was used, the upper bound was
determined by testing all patches as
sources, selecting the source that maxi-
mized the average overall accuracy over
the entire dataset. The bound for larger
sets of sources was estimated in a greedy
manner by iteratively adding source
candidates using the same criterion. The
lower bound was generated similarly by
minimizing the average overall accuracy.

Results and Discussion

Domain Selection

Figure 5 and Table 4 show the evalua-
tion of source selection without using
DA. The evaluation is based on AOA =
OA;~ OAg;, where OA,. is the overall
accuracy achieved on the target dataset
when training the classifier on a labeled
target dataset and OAg, is the overall ac-
curacy on the target dataset when train-
ing on a synthesized source. Thus, AOA
directly shows how much performance
is lost by not having access to class la-
bels in the target domain, and it should
be as small as possible. We present
percentile plots and the average AOA as
well as the standard deviation (STDEV)
of AOA over 10 test runs for each dataset
separately. The percentile plots show
the cumulative distribution of AOA over
all patches in a dataset. Generally, we
strive to achieve large losses (right side
on the percentile plots) for only a small
number of patches in a dataset (bottom
of the percentile plots). The results do
not exhibit too many surprises. With

all datasets, random selection is clearly
inferior to all other tested methods.
Furthermore, using multiple weighted
sources usually outperforms single
source selection. Our asymmetric MMD
generally performs similarly to their
symmetric versions. Yet, while the MMD
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Figure 6. Multi-source domain adaptation results. AOA: difference in overall accuracy compared to a classifier based on target
training data. For the interpretation of the figures, cf. Figure 5.

is evaluated on the entire training sets, the
AMMD only ever has access to N, samples
of each source training set. In contrast to the
experiments in (Vogt et al., 2017), the super-
vised domain distances generally perform
worse than their unsupervised variants.

Table 5. Multi-source domain adaptation results. Mean AOA: the average loss
in overall accuracy (0A) after DA when compared to a classifier based on target
training data (lower is better); the average of 10 test runs is reported. Stdev:
standard deviaton of AOA over 10 test runs. ADA: the improvement in OA when
enabling DA (higher is better). DA1-3 applies domain adaptation to the best one
to three sources based on our unsupervised asymmetric multi-source selection.

The core idea is that the d;,, adds a bias to

Random DA1 DA2 DA3

Random DA1 DA2 DA3

prefer sources that have a larger margin, and
therefore also a simpler decision boundary.

Mean ACA 5.3

3.2 2.4 2.2 Mean AOA 8.0 3.5 2.8 2.6

It appears that this bias might not always be Stdev 3.9 2.6 1.5 1.4 Stdev 7.7 2.7 2.5 2.4
desirable and its application should depend ADA -0.9 05 00 0.1 ADA -1.8 04 -01 -01
both on the feature space and on the clas- (a) Vaihingen (b) Potsdam

sification method. Surprisingly the AMMD Random DA1 DA2 DA3 Random DAL DAZz DA3
seems to be less affected. We currently do

not have an explanation for this observation. Mean AOA 26.3 2.6 2.0 1.9 Mean AOA 19.6 2.8 2.4 2.3
For the Valhingen dataset, the tested meth- Stdev 22.1 2.8 2.8 2.8 Stdev 15.4 2.6 2.4 2.3
ods result in very similar results, which is a ADA 0.4 01 02 0.3 ADA 0.8 -0.3 00 01

behavior different from the one for the other

(c) 3CityDS

(d) Combined

datasets. As most patches in the Vaihingen
dataset have a very similar appearance and
class distribution, the gains from using TL methods should be
expected to be small. The 3CITYDS and Combined datasets,
on the other hand, present a more difficult challenge due to
the pronounced inhomogeneity between patches. While both
naive source selection strategies, Random Source and All
Sources, perform particularly bad here, our proposed multi-
source selection methods manage to achieve stable perfor-
mance (£2.5%) across all datasets.

Figure 6 and Table 5 show the DA results using a random
source and the 1 to 3 best sources according to unsupervised
multi-source selection using our asymmetric MMD metric. Again,
the evaluation is based on AOA as described earlier in this sec-
tion. In addition, we compared the OA on the target data with
and without enabling the DA extension in logistic regression.

We report ADA= OASD#? — OAg;, where OABR% is the over-
all accuracy on the target dataset when training on a synthe-
sized source after domain adaptation. ADA can be understood
as the mean difference in OA due to enabling DA over all
patches of a dataset, where positive ADA represents a positive
transfer. The test shows that using multiple sources always
improves the prospects of DA (indicated by ADA > 0), but this
effect also seems to diminish quickly when a larger number of
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sources is used. Compared to the results in (Vogt et al., 2017)
the gains of using DA seem to be reduced for more complex
feature spaces. It can be observed that DA still shows the
greatest benefits for complex and inhomogeneous datasets,
like the 3CITYDS or Combined datasets. Our initial working
hypothesis was that applying instance-transfer based DA to
a related source should improve the expected gains, with the
goal to achieve positive transfer in most target domains. Our
experiments have shown that while selecting a related source
is a necessary condition to this end, it does not appear to be
sufficient alone.

Despite the modest improvements in overall accuracy,
DA may still be worthwhile for some applications. Figure 7
shows an example for the class building from our DA experi-
ments using the Combined dataset. The figure shows that the
synthesized source sometimes failed to reproduce low build-
ings with flat roofs; obviously, even in the synthesized source
the DSM heights were not representative for such buildings
in these cases. These buildings may be recovered using DA,
as seen in Figure 7d. The overall pixel count covered by
such objects remains small compared the patch size, which
explains their low impact on the measured ADA values.
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Domain Ranking

Figure 8 shows the results of our domain ranking experi-
ments. The diagrams plot the average OA for a dataset when
applying source selection as a function of the number N, of
source domains that are assumed to provide training data.
The order in which the domains are considered for labeling
and, thus, to be included in the set of available source do-
mains, is the one predicted by our domain ranking procedure.
It can be easily seen that our proposed method is capable of
selecting the most important sources with a high degree of
certainty. The results of our kernel herding approach follow
the theoretical optimum very closely on all datasets. For the
Vaihingen, Polsdam and 3CITYDS datasets, less than five of
the patches would have to be labeled manually to achieve re-
sults closer than 2 percent in QA to a fully labeled dataset. For
the Combined dataset, this figure can be stated as less than

10 patches. Considering the evaluated datasets, our proposed
algorithm would be able to save more than 66 percent to 85
percent in manual labeling cost while only incurring a neg-
ligible amount of loss in 0A. While the performance for few

appears that while our proposed kernel matrix does contain
enough information to confidently rank the most important
domains, it cannot do so for the more uninformative domains.
We tested this hypothesis by repeating kernel herding with
small random perturbations to K. We notice that the absolute
domain ranking quickly becomes unstable after the first few
ranks. Yet, for practical applications, we do not expect this to
become a significant problem.

We also provide runtime measurements for our single
source selection based on the d, ;p, domain distance. For
instance, in the experiments based on the combined dataset,
computing the source weights for a single target takes 6.6 sec
using our GPGPU implementation? on a single NVIDIA GTX
1060. Applying domain ranking on this dataset therefore
takes only about seven minutes. It should be noted that this
performance scales linearly with the size of the target training
set, the number of source domains and the number of fea-
tures, yet remains constant with reference to the sizes of the
source training sets.

candidate sources is already quite satisfactory, the plots also

: 2. Can be made available by the corresponding author on request
show a very slow convergence to the optimum afterwards. It

2 L X - R i
{a) Visual {b) Target Classifier () Source Selection (d) Domam Adaptation
Figure 7. Example for the classification results for class building from the Combined dataset. Buildings are printed black. (a)

Image (b) Results of a classifier trained on target data (c) Results after multi-source selection without DA using three sources
(d) Results with DA.
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Figure 8. Domain ranking results. Avg. OA: average overall accuracy over the dataset for different numbers of candidate
source domains (higher is better). N; number of source domains that provide labeled training data.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

May 2018

259




Conclusions

In this work, we presented two domain distance measures
based on the MMD and their variants that are able to cap-

ture the asymmetric relationship between target and source
domains in a supervised learning setting. The supervised do-
main distances require labeled samples in the source domain,
while the unsupervised distances operate without using any
labels. We developed a multi-source selection method that
synthesizes a related source as a weighted combination of a
set of candidate sources, of which only a few may be related
to the target. Our fastest method has a linear run-time com-
plexity in regard to the number of candidate sources and the
size of the target training set. More importantly, our proposed
asymmetric MMD metric has a small memory footprint since it
requires less than 100 samples from each source domain and
is thus applicable to very large datasets. We also expanded

an existing DA method to cope with multiple sources being
assigned different weights.

Our experiments show that multi-source selection is con-
sistently able find related sources from a large set of candidate
sources. The average loss in classification performance very
predictably remains below 2.5 percent when compared to a
classifier that has full access to labeled samples in the target
domain over a variety of datasets. Additionally applying DA
achieved a small positive transfer when using the weighted
combination of two or more sources selected by our unsuper-
vised procedure. Yet, this gain is quite small and could not
be achieved for all datasets. Finally, we examined a scenario
where only unlabeled data is available. We applied our source
selection method to find the most informative domains. We
have shown these informative domains to be good candidates
for manual labeling and that an acceptable classification accu-
racy can be achieved while reducing manual work by up to 85
percent. For our experiments, we have assumed a shared fea-
ture space for all domains. In the future, we plan to integrate
our source selection method with feature selection and feature
extraction approaches, such as deep neural networks (Long et
al., 2015). By adaptively finding an optimized feature space in
which the target and source domains maximize their similarity,
the usage of more complex features should become feasible.
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Appendix: Proof for the Relation to Determine N,

Theorem 1: Given a statistically independent sample X=(x)¥,
from a distribution defined by its cumulative distribution func-
tion Pr(x<s). Let qg=Pr(x>s) be the probability that x is at least
as large as a given value s. Also, let p=1-Pr(max_.x>s) be the
probability that the largest element in a set X is smaller than s.
Then, for a fixed p and q the relationship Nzlog,_,p holds.

Proof. Given

q = Pr(x>s) (28)

N

p=1—PI‘(II1aXXZSJZPI‘(X<SVX€X)=(1—-q) {(29)

xeX
It follows

1—Pr(maxx > s)g p’(:)(l—q)N <p'e©Nz2logi_,(p) (30)
xeX
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