Physical High Dynamic Range (HDR) Imaging with Conventional Sensors Holger Meuel · Hanno Ackermann · Bodo Rosenhahn · Jörn Ostermann

Scenario and Goal

Goal: Simplified high dynamic range (HDR) image generation

- Scenario: Dynamic range of scene is larger than dynamic range of sensor
- \blacktriangleright Common HDR: exposure bracketing \Rightarrow several shots
 - \Rightarrow Long total acquisition time
 - \Rightarrow Ghosting likely to occur
 - \Rightarrow Challenging free-hand shots

Underexposed \Rightarrow highlights OK

Overexposed \Rightarrow shadows OK

- and a state of the second

> HDR image generation from several low dynamic range (LDR) images may be challenging and computationally complex

Idea: Sampling during exposure

Sampling during Exposure

100

200

255

255

- Pel-wise temporal extrapolation
- Pel-wise averaging of temporally extrapolated pels

Improvement for noise reduction:

Weighted averaging of temporally extrapolated samples

Total acquisition time $t_{E} \ll t_{total,common} \Rightarrow$ ghosting artifacts less likely to occur

Error Analysis

- Rounding error for each intermediate sampling step: $|e| \leq \frac{1}{2}$
- Rounding error after extrapolation from k-th out of s sampling steps: $|e_k| \leq \frac{s}{2k}$
- Error for noise-free case: $e_k = |\bar{v}(x, y, t_E) g_k|$,

with $\overline{v}(x, y, t_{\rm E})$: non-measurable, true value for pixel (x, y) after total exposure time $t_{\rm E}$, $g_k = \frac{s}{k} \cdot \left| \frac{k}{s} \cdot \overline{v}(x, y, t_E) \right|$: extrapolated value, [·]: rounding function

Error with zero-mean white Gaussian noise: $e_k \leq \left| \overline{v}(x, y, t_E) - \left(g_k + \frac{s}{k} [\eta_k] \right) \right| + v_k$ with η , g, ν : random variables with realizations η_k , g_k , $\nu_k = \frac{s}{k} \cdot 1$

Temporal averaging and weighting for noise-reduction

- Extrapolated rounding errors and noise decrease for later sampling steps, but **all** sampling steps are affected by independent noise \Rightarrow temporal averaging
- Signal-to-noise ratio (SNR) increases for longer exposure times \Rightarrow higher weighting of later sampling values, e.g. with weighting function $w_k = \frac{\kappa}{\sum_{i=1}^{s} j}$

Experimental Results

- 10 intermediate samplings simulated by taking 10 photos with increasing exposure times \Rightarrow worst-case due to independent noise and rounding in each photo
- Matlab's default tone mapping

Black lines: noise-free ($\sigma = 0$); red lines: w/ noise $\sigma = 3$. Dash-dotted: naïve extrapolation; dashed: temporal averaging; solid: weighted averaging

Proposed w/ weighted averaging

Magnifications (colors match colors left)

Side-by-side: left: common, right: proposed

Summary

- Simple HDR image generation
- Intermediate read-outs (samplings) without reset
- Pel-wise extrapolation

- Reduced image noise for low-light scenarios
- Improved detail preservation
- \blacktriangleright Reduced total image-aquisition time \Rightarrow reduced ghosting

No or small hardware changes \Rightarrow applicable for low-cost sensors (e.g. in smartphones)

