
GABAC: an arithmetic coding solution for genomic data

Tom Paridaens, Jan Voges, Mikel Hernaez, Jan Fostier, and Jörn Ostermann

In an effort to provide a response to the ever-expanding gener-
ation of genomic data, MPEG (Moving Picture Experts Group),
under the auspices of ISO (International Organization for Stan-
dardization), is designing a new solution for the representation,
compression and management of genomic sequencing data: the
MPEG-G standard. This standard specifies an abstract repre-
sentation of sequencing data and offers support for, among oth-
ers, multi-dimensional random access, extensive meta-data infor-
mation, data and privacy protection, data storage and stream-
ing. Part 2 of the MPEG-G standard focuses on specifying
the coding of the sequencing data. Note that the standard is
a set of specifications (i.e., a book) assembled after an open
competition for technologies, and thus, it does not provide, per
se, actual encoding implementations. This paper discusses the
first baseline implementation of an MPEG-G compliance entropy
encoder/decoder: GABAC. GABAC combines proven coding
technologies, such as context-adaptive binary arithmetic coding
(CABAC) [1], binarization schemes, and transformations into
one straight-forward solution for the compression of the sequenc-
ing data. GABAC will be part of the open-source full MPEG-G
encoder/decoder suite Genie, currently under development by
the Mitogen initiative1.

Methods: The MPEG-G standard represents genomic infor-
mation by splitting the data into a set of descriptor streams.
Each descriptor stream has been designed to contain one spe-
cific type of data (e.g., mapping positions, quality scores or mis-
match information). Thanks to this approach, all data contained
in a descriptor stream is homogeneous. Note that other genomic
data compressors also employ a similar approach of generating
streams containing statistically similar data [2, 3]. This property
allows for effective data compression, as redundancies are more
probable and value distributions are more predictable.

Given an input stream, the compression process specified in
the MPEG-G standard consists of a five-step pipeline: input
parsing, (optional) 3-step transformations, symbol binarization,
context selection, and CABAC.

In the input parsing step, the descriptor stream is parsed into
a stream of symbols. These symbols are then processed by the 3-
step transformation step, which converts the symbol stream into
one or more transformed sub-streams. Available transformations
are as follows. i) run-length encoding, where repetitions of sym-
bols are translated into a symbol sub-stream and a length sub-
stream); ii) match coding, an LZ77-style transformation where
blocks of symbols are replaced by a pointer and length value,
indicating either the position and the length of a perfect match
of this block in the previously encoded symbols, or indicating a
raw symbol if no match is found; iii) equality coding, where a
symbol is replaced by a flag indicating equality of the symbol
and its predecessor and a correction symbol, if required; iv) a
look-up table transformation; and v) differential coding.

In the first part of the transformation step, the symbols are
processed using either run-length encoding, match coding, or
equality coding. In the second part of the transformation step,

1https://github.com/mitogen

which is applied to each transformed sub-stream separately, a
look-up table transformation can be performed. Finally, in the
third part of the transformation step, a differential coding can
be applied.

Each transformed sub-stream is then processed separately dur-
ing the rest of the process. For each sub-stream a binarization
algorithm, used for conversion of each symbol into a bit string,
is chosen together with a context selection algorithm. In the last
step, each bit of the binarization (called a bin) is combined with
a context (selected using the context selection algorithm) and
both are processed using CABAC.

Results: To analyze the performance of the GABAC encoder,
a test set of 206 descriptor stream files (cropped to a maximum
size of 200 MiB each to emulate random access capabilities) has
been selected. These files contain data (such as mapping posi-
tions, pairing information, or unmapped reads) generated from
items 02, 03, 05, 07, 08, 09, 10, and 20 of the MPEG-G Ge-
nomic Information Database2. The total uncompressed size is
12.97 GiB.

The performance of GABAC was compared to the codecs that
are used in CRAM, i.e. gzip, bzip2, xz, rANS order-0, and rANS
order-1. The rANS codecs were extracted from CRAM and are
publicly available3. The tests were performed in parallel on a
set of five servers, each equipped with 2 Intel Xeon E5-2650 v3
CPUs and 128 GiB of RAM, running Ubuntu 14.04.

Table 1 shows the total compressed size and the total encoding
and decoding times for each of the tested codecs for all considered
streams. Additionally, the table shows the compressed size for
the complete test set when, for each file, the codec with the
highest compression ratio across the CRAM encoders is selected
(CRAM), and across the CRAM encoders and GABAC (CRAM
+ GABAC). GABAC offers the highest compression ratio across
all coding solutions, while being 5.5 times faster than the second
best compressor. Additionally, adding GABAC to the CRAM
set of encoders offers an additional compression gain of 79 MiB
and a speed-up with a factor of 2.4 in compression time.

Compressed Encoding Decoding
Size (MiB) Time Time

gzip 3,524 3h 25m 18s 06m 02s
bzip2 3,088 33m 55s 20m 00s
xz 2,944 4h 47m 38s 09m 25s
rANS-0 4,143 06m 01s 07m 08s
rANS-1 3,400 06m 54s 08m 20s
GABAC 2,877 45m 25s 20m 18s

CRAM 2,879 2h 25m 58s 09m 32s
CRAM + GABAC 2,800 1h 01m 17s 20m 08s

Table 1: Total compressed size and decoding & encoding times.

Figure 1 shows the compression ranking for each codec and
each descriptor stream file. The x-axis shows the MPEG-G Ge-

2https://mpeg.chiariglione.org/standards/MPEG-G/genomic-
information-representation/MPEG-G-genomic-information-database

3https://github.com/voges/rans




