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Abstract—The efficiency of motion compensated prediction in
modern video codecs highly depends on the available reference
pictures. Occlusions and non-linear motion pose challenges for
the motion compensation and often result in high bit rates for the
prediction error. We propose the generation of artificial reference
pictures using deep recurrent neural networks. Conceptually, a
reference picture at the time instance of the currently coded
picture is generated from previously reconstructed conventional
reference pictures. Based on these artificial reference pictures, we
propose a complete coding pipeline based on HEVC. By using the
artificial reference pictures for motion compensated prediction,
average BD-rate gains of 1.5% over HEVC are achieved.

I. INTRODUCTION

High Efficiency Video Coding (HEVC) was technically
finalized in January 2013 and constitutes the standardized
state-of-the-art for video coding since then. As a joint effort
of the Joint Collaborative Team on Video Coding of ISO/IEC
and ITU-T, it was published as MPEG-H Part 2 and H.265,
respectively. Compared to its predecessor standard Advanced
Video Coding (AVC), HEVC enables a 40-60% bit-rate reduc-
tion while maintaining a comparable visual quality [1], [2].
The consistently high desire for improved coding efficiency
motivated the continued research for compression algorithms
beyond HEVC.

All modern video codecs share the same fundamental work-
ing principle: block-based hybrid video coding. It consists in
the combination of a prediction with transform coding for the
prediction error. The prediction methods can be distinguished
into intra and inter coding. Intra coding relies on previously
coded parts of the current picture to predict a new block within
this picture. Inter coding additionally utilizes temporal redun-
dancy between consecutive pictures to improve the prediction.
Conceptually, previously reconstructed pictures are stored in a
reference picture buffer and used to make a prediction for the
currently coded block via motion compensated prediction. The
quality of motion compensated prediction highly depends on
the available reference pictures. Furthermore, the better motion
compensation performs, the lower the bit rate for the prediction
error gets.

It is worth noting that due to the motion compensation, the
quality of the reference pictures does not necessarily correlate
with the pixel-wise fidelity between the current picture and the
reference pictures. For example, a reference picture which is
a translationally shifted version of the current picture would
be a good prediction reference despite the low pixel-wise
fidelity between these pictures. More problematic are complex

motions or occlusions which cannot be handled by the motion
model of the video codec.

In this paper, we use a deep learning-based approach to
overcome this limitation. Conceptually, we process existing
reference pictures from the buffer (which are referred to
as conventional reference pictures in the following) with a
recurrent neural network to generate a new artificial reference
picture. This artificial reference picture is then additionally
used for motion compensated prediction. The underlying hy-
pothesis of our work is that the artificial reference picture
enables a better prediction which in turn results in a smaller
prediction error and a lower bit rate.

Our main contributions in this paper are: 1.) Generation of
artificial reference pictures using a recurrent neural network.
2.) Complete coding pipeline with the neural network inte-
grated in the video codec HEVC.

The remainder of this paper is organized as follows: In
Section |II, we discuss the closest related works and high-
light the distinguishing features of our proposed method. Our
method for deep learning-based reference picture generation is
presented in Section[[TI] The experimental results are presented
and discussed in Section In Section [V] we draw our
conclusions for this work.

II. RELATED WORKS

In this section, we briefly review the closest related works
in the following three categories: generation of additional
reference pictures for improved prediction, usage of deep
learning for improving video coding, prediction of future
pictures from a sequence of pictures using neural networks.

In the first category, Laude et al. generate a new refer-
ence picture in the context of scalable video coding where
multiple representations of a video (e.g. different qualities
or resolutions) are coded jointly [3]], [4]. Basically, they
combine low-frequency information from base layers with
high frequency information from enhancement layers. For
this purpose, they apply adaptive Wiener filters to reference
pictures of both layers and inter-layer motion compensation
to the enhancement layer. In their approach, the existence of
multiple representations of the same video is indispensable. In
contrast to that, our method is applicable to the general case
of video coding in which only one representation of a video
is coded.

Works in the second category gained popularity during
the last few years as deep learning spread to many new
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applications. Video encoding is a very complex task because
a comprehensive rate-distortion optimization is required to
fully exploit the capability of modern video codecs. Therefore,
neural networks were adopted to approximate the optimal
rate-distortion decision (e.g. [3]). In contrast to that we use
neural networks for a novel coding algorithm instead of for
the control of existing coding modes. Li et al. propose deep
learning-based algorithms for intra coding [6]. In contrast to
that, we use neural networks in the context of inter prediction.

For our method, we use a deep neural network to predict
a picture from a sequence of preceding pictures. There are a
number of related works covering this problem which fall into
the third category of related works, amongst them [7], [8], [9].

In [7], Liu et al. train a convolutional encoder-decoder
neural network to calculate the optical flow between two or
more pictures. Using the optical flow data, the authors synthe-
size predictions of either in-between pictures (interpolation)
or subsequent pictures (extrapolation). In [8]] and [9], optical
flow is not used for picture prediction.

To improve the sharpness of future pictures predicted by a
convolutional neural network, Mathieu et al. propose a multi-
scale neural network, an adversarial training method, and a
special loss function in [8].

In [9]], Lotter et al. predict future pictures for a sequence
of pictures with a recurrent neural network architecture they
call PredNet. The architecture is inspired by the concept of
predictive coding from the neuroscience literature. Predictive
coding in this case describes the process of the brain contin-
ually making predictions of incoming sensory stimuli which
are then compared to the actual incoming sensory stimuli to
improve future predictions. The authors adopt this principle
in that their network performs a prediction for every single
picture in the sequence of pictures which is compared to the
actual picture at that time instance for improved prediction of
the next picture. Typically, nine previous pictures were utilized
for the prediction of the next picture. This results in a high-
quality prediction when finally a future picture is predicted.
The PredNet consists of multiple similar modules which make
local predictions and only forward the error obtained from this
prediction to subsequent modules.

In contrast to the works in the third category we not only
use a neural network for future picture prediction, but we also
use the prediction to improve motion-compensated prediction
in video coding.

III. DEEP LEARNING-BASED REFERENCE PICTURE
GENERATION

In this work, we adopt the recurrent neural network archi-
tecture from the PredNet model proposed by Lotter et al. [9]]
and use it to predict the picture to be coded from its reference
pictures. For conciseness, the architecture is briefly reviewed
in the following.

The network consists of four stacked modules with the same
architecture (with differences for the first and last module). Ev-
ery module contains several submodules which are explained
in the following as shown in Fig. |1} A recurrent Representation
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Fig. 1. PredNet module structure. The network is formed by four stacked
modules. Adopted from [9].
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Fig. 2. Architecture of the stacked modules (from Fig.[T). Connections inside
modules are not shown for easier readability. The final prediction is generated
by the module with slightly darker blue. Based on [9].

submodule which is a convolutional Long Short-term Memory
(LSTM) layer; a Prediction submodule which is a convolu-
tional layer; a Target submodule composed of a convolutional
and a pooling layer; an Error submodule which consists of
a subtraction between the input and prediction submodules
combined with a ReLU activation function.

Four of those modules are used. The modules are positioned
in a sequence and every module is connected to its preceding
and its subsequent module with four connections as shown in
Fig. [2| We will refer to the modules as Module 1, 2, 3 and 4.

The input to Module 1 is not propagated from a preceding
module as there is no preceding module. The reference pic-
tures are supplied to the Target of Module 1. The pictures are
supplied, a single one per cycle, one after another in a recurrent
process. Because Module 4 has no subsequent module, there
are no connections to a subsequent module.

The first step in the first cycle is the update of the Represen-
tation of each module beginning from the back with Module
4. The Representation of Module 4 is updated with the data of



its Error and the Representation is then propagated to Module
3. The Representation of Module 3 is in turn updated with
the data of its Error and the propagated Representation. This
process is repeated for every module, finally updating the
Representation in Module 1.

The next step in the first cycle is the prediction in each mod-
ule, this time beginning with Module 1. Because no previous
pictures are provided, the prediction is empty. Meanwhile, the
actual reference picture is supplied to the Target of Module
1. In the Error submodule, the difference (error) between the
Prediction and the Target is calculated. This error is propagated
to the Target of Module 2. Next, a prediction for the error of
Module 1 is generated in Module 2. This prediction is then
compared to the actual error of Module 1. The difference is
calculated in the Error submodule and again propagated to
Module 3. The process is the same for Module 4. After the
Error submodule of Module 4 has been updated, the next cycle
begins.

The number of cycles is equal to the number of reference
pictures plus one. In the last cycle, the Representations of all
four modules are again updated. A prediction for the picture to
be coded is performed in Module 1. This time, no reference
picture is supplied to the Target because it is not available
for this time instance. This prediction is used as an artificial
reference picture.

For further details concerning the PredNet architecture the
reader is referred to [9]].

In this paper, we differentiate between the terms sequence
(whole video) and snippet (five consecutive pictures long por-
tion of a video). To train our neural network we used snippets
from the KITTI raw dataset [10]. The KITTI raw dataset
consists of uncompressed traffic recordings which contain a
considerable amount of motion. Using adequate training data
is imperative for the performance of neural networks. Images
from many databases like ImageNet suffer from partly severe
compression artifacts. While this is not a major problem
for computer vision tasks like image recognition, a problem
arises for the regression task of image prediction. With a
compromised database, the network would learn to create
compression artifacts. Therefore, we ensured to use a database
with uncompressed data. Hence, the neural network will not
learn any artifacts caused by compression.

From the KITTI raw data set we generated 50000 snippets
in the resolution 176 x 144 (QCIF). During the training process
we randomly chose 1000 snippets out of those for every epoch.
The network was trained for 150 epochs in total.

As model parameters we used 3 x 3 convolutions and layer
channel sizes of (3, 48, 96, 192) following [9]. Models were
trained with the Adam solver using a loss solely computed
based on the Error submodule of module one. We initially
used the default parameter values for Adam, learning rate o =
0.001, 81 = 0.9, B2 = 0.999. Additionally, we decreased the
learning rate by a factor of 10 halfway through training.

We use our trained neural network to generate artificial
reference pictures which are used for the motion-compensated
prediction of the HEVC encoding and decoding processes,

TABLE I
MEAN MSE AND SSIM OF THE DIFFERENT REFERENCE PICTURES AT
TIMES t; FOR ALL TEST SEQUENCES (UNSEEN DURING TRAINING) WITH
RESPECT TO THE ORIGINAL PICTURE AT TIME tg.

Reference picture at time MSE SSIM
t_4 (conventional) 2547 042
t_3 (conventional) 2170 0.45
t_o (conventional) 1680 0.49
t_1 (conventional) 1033 0.60

to (artificial) 237 0.83

respectively. Our modified implementation of HEVC is ex-
plained in the following and illustrated in Fig. |3} Before the
encoding or decoding process of every single picture is started
all reference pictures from the reference picture list of the
picture to be coded are supplied to the neural network. The
neural network generates a prediction of the picture to be
coded which can be used as an artificial reference picture.

There are two possible ways to use this artificial reference
picture. Either the picture can be added to the reference picture
list or the picture can replace one of the pictures in the
reference picture list. Since the selection of reference pictures
is an encoder choice which is obligatorily signaled as part
of the high-level syntax for each slice, this choice does not
impose any restriction of the method.

When adding the picture to the reference picture list, it is
difficult to measure if the artificial reference picture is a better
reference for motion-compensated prediction than the existing
reference pictures. This is because the additional reference
picture might improve motion-compensated prediction only
because it is different from the other reference pictures so
that it sometimes can give an improved MSE after motion-
compensated prediction and not because it is superior to the
other reference pictures. Additionally, the motion-compensated
prediction could also be improved by simply adding a con-
ventional reference picture from a not yet considered time
instance.

However, if replacing one of the reference pictures with
the artificial reference picture leads to an improved coding
efficiency during the encoding process then the artificial refer-
ence picture is superior to the replaced reference picture. For
this reason, we chose to replace a reference picture. Still, our
method is not limited to this approach.

We will demonstrate in our evaluation that the reference
picture t_, with the highest temporal distance to the currently
coded picture £y has the highest MSE and the lowest SSIM
compared to to. This motivated us to replace reference picture
t_4 with our artificial reference picture and not any of the
other reference pictures.

Other changes to the encoding and decoding process are
not necessary for our method because the motion-compensated
prediction can utilize the artificial reference picture in the same
way as it utilizes the conventional reference pictures.
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Fig. 3. Block diagram of the proposed pipeline. The existing reference

pictures are used to generate an artificial reference picture using our deep
learning-based reference picture generation.

TABLE 11
BD-RATE GAINS AND CODING TIME RATIOS FOR ALL VIDEOS AND MEAN
VALUES. POSITIVE BD-RATE GAINS INDICATE INCREASED CODING
EFFICIENCY. CODING TIME RATIO > 1 INDICATE INCREASED

COMPLEXITY.

BD-rates Time ratios
Video Y Cb Cr  Weighted | Enc. Dec.
KITTI 1|1.48% 5.52% 1.50% 1.98% |0.63 7.36
KITTI 2|2.09% 7.27% -5.82% 1.75% |0.71 6.86
KITTI 3|2.52% 4.81% -3.42% 2.06% |0.69 8.02
KITTI 4|2.45% 5.76% -2.40% 226% |0.75 5.27
KITTI 5(0.65% 3.73% 3.85% 1.44% |0.66 7.94
KITTI 6 [{2.03% 3.28% -3.31% 1.52% |0.70 7.61
KITTI 7(0.50% 3.41% 0.25% 0.84% |0.69 7.64
KITTI 8| 1.35% 3.71% -1.06% 1.35% |0.73 6.81
KITTI 9(0.46% 3.87% -1.08% 0.69% |0.67 7.43
Mean 1.50% 4.60% -1.27% 1.54% |0.69 7.21

IV. EVALUATION

In this section, we discuss the results of the neural network
and of our complete pipeline using our implementation in the
HEVC reference software HM 16.18. The encoder was con-
figured in a low-delay configuration where the four preceding
pictures were used as reference pictures. The results presented
in the section were achieved using only sequences which were
not used for the training of the neural network. We chose these
sequences as they are best for the demonstration of the net-
work’s capability which depends on the ascertainability of the
motion. The motion in the KITTT dataset is better ascertainable
then the one of more general MPEG test sequences.

First, we will analyze the generated artificial reference
pictures. It is difficult to measure the quality of reference
pictures with a metric because their performance is revealed
only during motion-compensated prediction. In consequence,

metrics like MSE are limited for making conclusions in this
case. For example, when comparing two similar pictures where
one is translated by a single pel the MSE will not be negligi-
ble even though the original picture could be reconstructed
nearly perfectly from the translated picture using motion-
compensated prediction. Still, a tendency can be obtained by
measuring the quality of the artificial reference pictures in
terms of metrics without the context of motion-compensated
prediction. In the first and third row, Fig. @] shows the four ref-
erence pictures for a picture at time ¢y. The first four pictures
are the conventional reference pictures at time instances ¢_1
to t_4 and the fifth picture is the generated artificial reference
picture at time ¢y. In the second and fourth row, the error
between the corresponding picture in the first row and the
picture to be coded at time ¢ is visualized. The error pictures
were generated by calculating the absolute difference between
the pictures, thus the whiter a pixel, the higher the error at
that point.

Two main observations can be made here. Firstly, the error
of the artificial reference picture is lower than the error of the
conventional reference pictures for both examples. Secondly,
the error increases with increasing temporal distance between
the conventional reference pictures and the picture to be
coded at time tp, as expected. The observations from the
two representative examples are the same for a larger dataset.
We calculated the average MSE and SSIM for 684 snippets
unseen during training. The results for each of the reference
pictures are presented in Table [l It is acknowledged that
our method could likely be further improved by deciding
which reference picture to replace for every picture to be
coded adaptively depending on an analysis of the conventional
reference pictures.

The coding efficiency results are summarized in Table
BD rates were calculated following [11]. Additionally, as sug-
gested in [12], weighted average BD rates BDycycr were calcu-
lated with weighting factors of 6/1/1 for the three components
Y/Cb/Cr, respectively. In average, weighted BD-rate gains of
1.54% were achieved with values up to 2.26%. Preliminary
results suggest that the neural network can also predict videos
of higher resolution. To get further insights, we also tested our
method on completely different sequences (namely MPEG test
sequences) whose characteristics vary considerably from the
sequences used for training. As expected, the neural network
does not perform satisfactory enough for those sequences to
improve the coding efficiency. Nevertheless, the previously
described example from Fig. |4 indicates that this limitation
can be overcome.

We evaluated the complexity of our method by measur-
ing the coding time ratios relative to the unmodified HM
implementation. The results are summarized in Tab. The
processing time for the neural network was included for the
measured times. The encoder complexity is reduced (69% of
the original time) because the motion estimation of HM speeds
up more due to the higher similarity of the artificial reference
picture and the original picture than the forward pass of the
neural network takes in turn. On the other hand, the decoder



Fig. 4. Examples: Kitti 3 (top) and Basketball Drive (bottom). From left to right: ¢t _4, t_3, t_2, t_1, to (artificial)

complexity is increased by a factor of 7.2. This is due to the
fact that the decoder needs to perform the forward pass for
the neural network but does not benefit from the sped up of
the encoder-only motion estimation.

V. CONCLUSIONS

In this paper, we proposed the generation of artificial
reference pictures using deep recurrent neural networks. The
method is based on processing conventional reference picture
to create a prediction of an artificial reference picture at the
time instance of the currently coded picture. Thereby, we are
able to increase the coding efficiency of HEVC with average
BD-rate gains of 1.54%.
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