
1

Potassco:
The Potsdam Answer Set Solving Collection
Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Marius Schneider
Universität Potsdam, Potsdam, Germany
E-mail: {gebser,kaufmann,kaminski,ostrowsk,torsten,manju}@cs.uni-potsdam.de

This paper gives an overview of the open source project Potassco, the Potsdam Answer Set Solving Collection, bundling tools
for Answer Set Programming developed at the University of Potsdam.

Keywords: Answer Set Programming, Declarative Problem Solving

1. Introduction

Answer Set Programming (ASP; [5]) has become
a popular approach to declarative problem solving in
the field of Knowledge Representation and Reasoning
(KRR; [79]). This is mainly due to its appealing com-
bination of a rich yet simple modeling language with
high-performance solving capacities.

ASP has its roots in

– Knowledge Representation and
(Nonmonotonic) Reasoning,

– Logic Programming (with negation),
– Databases, and
– Boolean Constraint Solving.

The basic idea of ASP is to represent a given com-
putational problem by a logic program1 whose an-
swer sets correspond to solutions, and then to use an
ASP solver for finding answer sets of the program.
This approach is closely related to the one pursued in
propositional Satisfiability Testing (SAT; [9]), where
problems are encoded as propositional theories whose
models represent the solutions to the given problem.
Even though, syntactically, ASP programs resemble
Prolog programs, they are treated by rather differ-
ent computational mechanisms. Indeed, the usage of
model generation instead of query evaluation can be
seen as a recent trend in the encompassing field of

1In view of ASP’s quest for declarativeness, the term program
is of course a misnomer but historically too well established to be
dropped.

KRR but also more remote areas such as Automated
Planning and Computer-aided Verification.

More formally, ASP allows for solving all search
problems in NP (and NPNP) in a uniform way [93,
14], offering more succinct problem representations
than available in SAT [77]. Meanwhile, ASP has been
used in many application areas, among them, product
configuration [96], decision support for NASA shut-
tle controllers [86], composition of Renaissance mu-
sic [10], synthesis of multiprocessor systems [71], rea-
soning tools in systems biology [30,55], (industrial)
team-building [64], and many more.2

The success story of ASP has its roots in the early
availability of ASP solvers, beginning with the smod-
els system [95], followed by dlv [75], SAT-based ASP
solvers, like assat [80] and cmodels [61], and the
conflict-driven learning ASP solver clasp [48], demon-
strating the performance and versatility of ASP solvers
by winning first places at international competitions
like ASP’09, PB’09, and SAT’09.

In fact, clasp is a salient part of the open-source
project Potassco, the Potsdam Answer Set Solving
Collection, bundling tools for ASP developed at the
University of Potsdam. In what follows, we summarize
the various tools concentrating on their features and
underlying motivations.

Our paper presupposes a certain familiarity with the
syntax and semantics of logic programs under stable
model semantics [58]. For details on semantics, we re-
fer the reader to [58,5,57]. Likewise, first-order rep-

2See http://www.cs.uni-potsdam.de/~torsten/
asp for an extended listing of ASP applications.

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

2

resentations, commonly used to encode problems in
ASP, are informally introduced by need in the remain-
der of this paper. See [38] for detailed descriptions
along with various examples of the input languages of
the grounder gringo.

2. ASP Solving

As with traditional computer programming, the ASP
solving process amounts to a closed loop. Its steps can
be roughly classified into

1. Modeling,
2. Grounding,
3. Solving,
4. Visualizing, and
5. Software Engineering.

We have illustrated this process in Figure 1 by giving
the associated components. It all starts with a model-
ing phase, which results in a first throw at a represen-
tation of the given problem in terms of logic program-
ming rules. The resulting program is usually formu-
lated by means of first-order variables, which are sys-
tematically replaced by elements of the Herbrand uni-
verse in a subsequent grounding phase. This yields a
finite propositional program that is then fed into the
actual ASP solver. The output of the solver varies de-
pending on the respective reasoning mode. Often, it
consists of a textual representation of a sequence of an-
swer sets. Depending on the quality of the resulting an-
swer, one then either refines the (last version of the)
problem representation or not.

As pointed out in the introductory section, the
strongholds of ASP are usually regarded to be its rich
modeling language as well as its high-performance
solving capacities. Moreover, ASP distinguishes itself
by highly optimized yet domain-independent ground-
ing systems. In what follows, we concentrate on ASP
solving and grounding systems, thereby sketching
ASP’s modeling language. For issues related to soft-
ware engineering in ASP, the interested reader is re-
ferred to the dedicated workshop series, SEA [16,17].
A first approach to visualization can be found in [13].

3. gringo

The basic approach to writing programs in ASP fol-
lows a generate-and-test methodology (cf. [76]), in-
spired by intuitions on NP problems. That is, a “gen-

erating” part is meant to non-deterministically provide
solution candidates, while a “testing” part eliminates
candidates violating some requirements. (Note that this
decomposition is only a methodological one; it is nei-
ther syntactically enforced nor computationally rele-
vant.) In addition, one may specify optimization crite-
ria via lexicographically ordered objective functions.

To illustrate this, let us consider an ASP solu-
tion to the Traveling Salesperson problem, given in
Table 1 and 2. The first table describes the prob-

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

Table 1
A directed graph with weighted edges in ASP facts

lem instance; this and all following programs are for-
mulated in the input language of the ASP grounder
gringo [45]. The predicates node/1, edge/2, and
cost/3 specify a directed graph with weighted edges.
A statement like node(1..6). abbreviates the def-
inition of six facts, viz. node(1).,. . . ,node(6).
Similarly, the expression edge(1,2;3;4) stands
for edge(1,2).,. . . ,edge(1,4). The costs of the
edges are given unabbreviated as a collection of facts.
The interested reader is referred to [38] for a detailed
description of gringo’s input language.

Table 2 gives the encoding of the actual problem.
The predicate cycle/2 is meant to capture the result-
ing itinerary of the salesperson. The first two rules gen-
erate possible solution candidates. The first one makes
sure that for each node exactly one of its outgoing
edges belongs to the solution; similarly, the second rule
deals with incoming edges. This is modeled with so-
called cardinality constraints [95]. Their functioning is
best explained by regarding their instantiated form. To
this end, consider the grounding of the first rule when
taking node 1 along with its outgoing edges:

1 { cycle(1,2),cycle(1,3),cycle(1,4) } 1.

Note that grounding simplifies the rule by eliminat-
ing true components. The above constraint stipulates

3

Program Grounder Solver Output- - -

6

Fig. 1. ASP Solving Process

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize [cycle(X,Y) : cost(X,Y,C) = C].

Table 2
An ASP encoding of the Traveling Salesperson problem

that each solution must contain exactly one of the three
instances of the predicate cycle/2.

The predicate reach/1 captures all nodes reach-
able from (starting) node 1 through the edges distin-
guished by predicate cycle/2. The fifth rule is an in-
tegrity constraint requiring that each node in the graph
must be reachable in the aforementioned way. The ease
of expressing such reachability constraints is a major
feature of ASP.

Finally, the last statement instructs the ASP solver
to search for answer sets comprising instances of the
predicate cycle/2 that yield a minimum sum of as-
sociated costs, expressed via predicate cost/3.

Invoking gringo with the two files in Table 1
(graph) and Table 2 (tsp) results in an intermediate
format [72]. A human-readable format is obtained by
invoking gringo with the option --text (or -t for
short), e.g.:

$ gringo -t graph tsp

Another alternative format is obtained via option
--reify, yielding a reified representation of the
grounding (in terms of facts) that can then be used to-
gether with appropriate meta-programs. Of particular
interest are also the options --verbose[=<n>] and
--gstats providing the user with information about
the proceeding of the grounding process and statistics

of the grounding process, respectively. Further options
can be consulted via the --help option.

In fact, the input language of gringo is Turing-
complete, as exemplified below by an encoding of a
universal Turing Machine. A particular instance, a ma-
chine solving the 3-state Busy Beaver problem, is rep-
resented by the facts in Table 3; its graphical specifica-
tion is given in Figure 2.

The facts start(a). and blank(0). specify
the starting state a and the blank symbol 0, respec-
tively, of the 3-state Busy Beaver machine. Further-
more, tape(n,0,n). provides the initial tape con-
tents, where 0 indicates a blank at the initial position
of the read/write head and the n’s represent infinitely
many blanks to the left and to the right of the head.
Finally, the predicate trans/5 captures the transition
function of the Busy Beaver machine. A fact of the
form trans(S,A,AN,SN,D). describes that, if the
machine is in state S and the head is on tape symbol A,
it writes AN, changes its state to SN, and moves the
head to the left or right as given by D ∈ {l,r}.

start(a). blank(0). tape(n,0,n).
trans(a,0,1,b,r). trans(a,1,1,c,l).
trans(b,0,1,a,l). trans(b,1,1,b,r).
trans(c,0,1,b,l). trans(c,1,1,h,r).

Table 3
A 3-state Busy Beaver machine in ASP facts

Table 4 shows an encoding of a universal Turing Ma-
chine. It defines the predicate conf/4 describing the
configurations of the machine (e.g., the one specified
in Table 3) it runs. The rule in the first line determines
the starting configuration in terms of a state S, the tape
symbol A at the initial position of the read/write head,
and the tape contents L and R on its left and right, re-
spectively. The remaining four rules derive successor
configurations relative to the transition function (given

4

conf(S,L,A,R) :- start(S), tape(L,A,R).

conf(SN,l(L,AN),AR,R) :- conf(S,L,A,r(AR,R)), trans(S,A,AN,SN,r).
conf(SN,l(L,AN),AR,n) :- conf(S,L,A,n), blank(AR), trans(S,A,AN,SN,r).
conf(SN,L,AL,r(AN,R)) :- conf(S,l(L,AL),A,R), trans(S,A,AN,SN,l).
conf(SN,n,AL,r(AN,R)) :- conf(S,n,A,R), blank(AL), trans(S,A,AN,SN,l).

Table 4
An ASP encoding of a universal Turing Machine

. . . 0 0 0 0 0 0 0 0 0 . . .

astart b

c h

0,1,r

0,1,l
1,1,l

1,1,r

0,1,l

1,1,r

Fig. 2. A 3-state Busy Beaver machine

by facts over trans/5). The first two of these rules
model movements of the head to the right, thereby dis-
tinguishing the cases that the tape contains some (ex-
plicit) symbol AR on the right of the head or that its
right-hand side is fully blank (n). In the former case,
the symbol AN to write is appended to the tape con-
tents on the left of the new head position, represented
by means of the functional term l(L,AN), while AR
becomes the symbol at the new head position and R
the residual contents on its right. Unlike this, the rule
dealing with a blank tape on the right takes a blank
as the symbol at the new head position and n to rep-
resent infinitely many remaining blanks. Similarly, the
last two rules specify the symmetric cases obtained for
movements to the left. Note that, by using functions,
the encoding in Table 4 allows for representing runs of
machines without limiting the tape space that can be
investigated. Hence, whether gringo halts depends on
the machine to run. Notably, infinite loops in finite tape
space are (implicitly) detected, since repeated configu-
rations do not induce new ground rules.

Invoking gringo with files containing the rules in Ta-
ble 3 (beaver) and Table 4 (turing) yields:

$ gringo -t beaver turing
...
state(a,n,0,n).

state(b,l(n,1),0,n).
state(a,n,1,r(1,n)).
state(c,n,0,r(1,r(1,n))).
state(b,n,0,r(1,r(1,r(1,n)))).
state(a,n,0,r(1,r(1,r(1,r(1,n))))).
state(b,l(n,1),1,r(1,r(1,r(1,n)))).
state(b,l(l(n,1),1),1,r(1,r(1,n))).
state(b,l(l(l(n,1),1),1),1,r(1,n)).
state(b,l(l(l(l(n,1),1),1),1),1,n).
state(b,l(l(l(l(l(n,1),1),1),1),1),0,n).
state(a,l(l(l(l(n,1),1),1),1),1,r(1,n)).
state(c,l(l(l(n,1),1),1),1,r(1,r(1,n))).
state(h,l(l(l(l(n,1),1),1),1),1,r(1,n)).

In fact, the Turing Machine is completely evaluated
by gringo that prints all feasible configurations in the
same order as a Turing Machine would process them.
This means that the last line contains the configuration
in which the machine reaches the final state. Here, the
3-state Busy Beaver machine terminates after writing
six times the symbol 1 to the tape.

The expressive power of Turing-computability
should not mislead to the idea that the grounder is
meant to address computable problems completely by
itself. Rather, it provides the most general setting for
deterministic computations. In particular, this allows
for eliminating many external preprocessing steps in-
volving imperative programming languages.

Finally, let us highlight some features of the lat-
est construction series of gringo, starting with ver-
sion 3.0. A comprehensive documentation is found in
gringo’s manual [38]; previous versions are described
in [54,45]. First of all, the 3.0 series only stipulates
rules to be safe (cf. [1]) rather than to be domain-
restricted through additional domain predicates, as in
previous versions of gringo. As a consequence, pro-
grams are no longer subject to any restriction guaran-
teeing a finite grounding (like λ-restrictedness [54]).
Rather, this responsibility is left with the user in or-
der to provide her with the greatest flexibility. To see
this, consider the λ-restricted logic program in Table 5,
needing the domain predicate p/1 for delineating the

5

q(1,2). q(2,3). q(3,1). p(1;2;3).
q(X,Z) :- q(X,Y), q(Y,Z), p(X;Y;Z).

Table 5
A λ-restricted logic program for the transitive closure of q/2

instantiation of the last rule. Unlike this, the safe vari-
ant of this program, accepted by the recent gringo ver-
sion, makes such predicates obsolete, as seen in Ta-
ble 6. This general setting is supported by a ground-

q(1,2). q(2,3). q(3,1).
q(X,Z) :- q(X,Y), q(Y,Z).

Table 6
A safe logic program for the transitive closure of q/2

ing algorithm based on semi-naive database evaluation
(cf. [1]), closely related to that of dlv [75].

As with previous versions of gringo, its language
supports various aggregates. In fact, the cardinality
constraints in Table 2 are abbreviated count aggregates.
In full, they had to be written as

1 #count { cycle(X,Y) : edge(X,Y) } 1.

In addition, gringo supports the aggregate functions
#sum, #min, #max, #avg, #even, and #odd with
their obvious meanings. An interesting language exten-
sion of the 3.0 series are its optimize statements with
priorities, indicated by an @, e.g.:

#minimize { a = 4@7, b = 2@1, c = 3@1 }.

Here, a has weight 4 and priority 7. Priorities al-
low for representing a sequence of lexicographically
ordered minimization objectives, where greater levels
are more significant than smaller ones.3

Another powerful feature of gringo is its integrated
scripting language, viz. lua [70]. lua provides an al-
ternative means for deterministic computations and is
very useful when things would get messy in logic
programming. A typical example is interfacing to
databases or numeric computations. Both are easier ex-
pressed and computed in lua and then passed to gringo
in terms of sets of facts. See [38] for details and ex-
emplary use cases. The interested reader may also con-
sult [44] on the most recent advances in gringo.

3Explicit priority levels avoid a dependency of priorities on input
order, as considered by lparse [98] if several minimize statements
are provided. Priority levels are also supported by dlv [75] in weak
constraints.

4. clasp

clasp is originally designed and optimized for
conflict-driven ASP solving, as described in [48].
To this end, it features a number of sophisticated
reasoning and implementation techniques, some spe-
cific to ASP and others borrowed from CDCL-based
SAT solvers (cf. [9]).4 The basic search procedure
of CDCL-based solvers can be outlined by means of
the loop [27] given in Figure 3. At first, the closure
under deterministic consequence operations is com-
puted. This operation is of course different for SAT and
ASP solvers. Then, four cases are distinguished. In the
first one, a non-conflicting complete assignment is re-
turned. In the second case, an unassigned variable is
non-deterministically chosen and assigned. Or at last,
a conflict is encountered. All assignments made before
the first non-deterministic choice constitute the top-
level. Hence, a top-level conflict indicates unsatisfiabil-
ity. Otherwise, the conflict is analyzed and learned in
form of a conflict constraint. Then, the algorithm back-
jumps by undoing a maximum number of successive
assignments so that exactly one literal of the constraint
is unassigned.

clasp has been purposefully designed as a highly
configurable system, and thus many of these features
are subject to user control via command line options
(try clasp --help for an overview). Moreover,
clasp can be used as a full-fledged SAT or Pseudo-
Boolean solver, accepting propositional CNF formulas
in dimacs format and Pseudo-Boolean formulas in opb
format, respectively.5 The remainder of this section,
however, is devoted to ASP solving, detailing some se-
lected features of clasp.

4.1. Interfaces and Preprocessing

For ASP solving, clasp reads ground logic pro-
grams provided by gringo (or lparse [98], alterna-
tively). Choice rules, cardinality and weight con-
straints (cf. [38]) are either compiled into nor-
mal rules during parsing, configurable via option
--trans-ext, or dealt with in an intrinsic fashion
(by default; see Section 4.3 for details).

At the beginning, a logic program is subject to ex-
tensive preprocessing [49]. The idea is to simplify the
program while identifying equivalences among its rele-

4CDCL stands for Conflict-Driven Clause Learning (cf. [15,81]).
5Both formats are automatically detected and handled by clasp

series 1.3.

6

loop

propagate // compute deterministic consequences
if no conflict then

if all variables assigned then return variable assignment
else decide // non-deterministically assign some variable

else

if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit

Fig. 3. Solving loop of CDCL-based solvers

vant constituents. These equivalences are then used for
building a compact program representation (in terms of
Boolean constraints). Notably, preprocessing is some-
times able to turn a non-tight program into a tight one
(cf. [31,3]).6 Logic program preprocessing is config-
ured via option --eq, taking an integer value fixing
the number of iterations.

Once a program has been transformed into Boolean
constraints, they can be subject to further prepro-
cessing, primarily based on resolution [25]. Such
SAT-oriented preprocessing is invoked with option
--sat-prepro and further parameters.

A major yet internal feature of clasp is that it can be
used in a stateful way. That is, clasp may keep its state,
involving program representation, recorded nogoods,
heuristic values, etc., and be invoked under additional
(temporary) assumptions and/or by adding new atoms
and rules. The corresponding interfaces are fundamen-
tal for supporting incremental ASP solving as realized
in iclingo ([39]; cf. Section 8), a combination of gringo
and clasp for incremental grounding and solving. Also,
they allow for solving under assumptions [26], an im-
portant feature that is, for example, used in our parallel
ASP solver claspar ([28]; cf. Section 6).

4.2. Reasoning Modes

Although clasp’s primary use case is the computa-
tion of answer sets, it also allows for computing sup-
ported models7 of a logic program (via command line

6Informally, tightness [31] indicates that a program is free of re-
cursion through positive literals.

7The models of the Clark completion [12] of a program are called
supported models [2]. On tight programs, supported models and an-
swer sets coincide [31].

option --supp-models).8 In either case, clasp pro-
vides a number of reasoning modes, determining how
to proceed when a model is found.

To begin with, different ways of enumerating mod-
els are supported by clasp. In fact, solution enumera-
tion is non-trivial in the context of backjumping and
conflict-driven learning. A popular approach consists
in recording solutions as nogoods and exempting them
from deletion. Although clasp supports this via op-
tion --solution-recording, it is prone to blow
up in space in view of an exponential number of
solutions in the worst case. Unlike this, the default
enumeration algorithm of clasp runs in polynomial
space [47]. Both enumeration approaches also allow
for projecting models to a subset of atoms [51], in-
voked with --project and configured via the well-
known directives #hide and #show of gringo. This
option is of great practical value whenever one faces
overwhelmingly many answer sets, involving solution-
irrelevant variables having proper combinatorics. For
example, the program consisting of the choice rule
{a,b,c}. has eight (obvious) answer sets. When
augmented with directive #hide c., still eight solu-
tions are obtained, yet including four duplicates. Un-
like this, invoking clasp with --project yields only
four answer sets differing on a and/or b, respectively.

As regards implementation, it is interesting to note
that clasp offers a dedicated interface for enumera-
tion. This allows for abstracting from how to proceed
once a model is found and thus makes the search algo-

8To be more precise, this option disables unfounded set check-
ing. Sometimes, the grounder or preprocessing may already elimi-
nate some supported models such that they cannot be recovered later
on.

7

rithm independent of the concrete enumeration strat-
egy. Further reasoning modes implemented via the
enumeration interface admit computing the intersec-
tion or union of all answer sets of a program (via
--cautious and --brave, respectively). Rather
than computing the whole set of (possibly) exponen-
tially many answer sets, the idea is to compute a first
answer set, record a constraint eliminating it from
further solutions, then compute a second answer set,
strengthen the constraint to represent the intersection
(or union) of the first two answer sets, and to continue
in this way until no more answer set is obtained. This
process involves computing at most as many answer
sets as there are atoms in the input program. Either the
cautious or the brave consequences are then given by
the atoms captured by the final constraint.

Another application-relevant feature is optimization.
As already mentioned in Section 3, an objective func-
tion is specified via a sequence of #minimize or
#maximize statements. For finding optimal solu-
tions, clasp offers several options. First, clasp allows
for computing one or all (--opt-all) optimal solu-
tions. Second, the objective function can be initialized
via --opt-value. The latter turns out to be useful
when one is interested in computing consequences be-
longing to all optimal solutions (in combination with
--cautious). To this end, one starts with search-
ing for an (arbitrary) optimal answer set and then re-
launches clasp by bounding its search with the ob-
tained optimum. Doing the latter with --cautious
yields the atoms that belong to all optimal answer sets.
On applications, it turned out to be very helpful to
optimize using the option --restart-on-model
(making clasp restart after each (putatively) optimal
solution) in order to ameliorate convergence to the op-
timum. Moreover, option --opt-heu can be used to
alter default sign selection (see below) for atoms sub-
ject to the objective function towards a better func-
tion value. Optimization is implemented via the afore-
mentioned enumeration interface. When a solution is
found, an optimization constraint is updated with the
corresponding objective function value. Furthermore,
it is worth mentioning that clasp also propagates op-
timization constraints, that is, they can imply (and
provide reasons for) literals upon unit propagation.
Finally, if optimization is actually undesired and all
solutions ought to be inspected instead, the option
--opt-ignore is available to make modifying the
input (by removing optimize statements) obsolete.

Prediction under inconsistency in an application to
bioinformatics [36] is an interesting use case of clasp’s
manifold reasoning modes.

4.3. Propagation and Search

Propagation in clasp relies on an interface Boolean
constraint; it is thus not limited to (clausal repre-
sentations of) nogoods (cf. [27]). However, dedicated
data structures are used for binary and ternary no-
goods (cf. [90]), accounting for the many short no-
goods stemming from Clark completion [12]. More
complex constraints are accessed via two watch lists
for each variable (cf. [84]), storing the Boolean con-
straints that need to be updated if the variable becomes
true or false, respectively. While propagation over long
nogoods is based on the well-known two-watched-
literal algorithm, a counter-based approach is used for
propagating cardinality and weight constraints [40].

During unit propagation, binary nogoods are han-
dled before ternary ones, which are in turn in-
spected before other Boolean constraints. As detailed
in [48], our propagation procedure is distinct in giv-
ing a clear preference to unit propagation over un-
founded set computations. Unfounded set detection
aims at small and “loop-encompassing” rather than
greatest unfounded sets. As detailed in [40], native
treatment of cardinality and weight constraints aug-
ments the source-pointer-based unfounded set algo-
rithm, while still aiming at lazy unfounded set check-
ing and backtrack-freeness. The creation and repre-
sentation of loop nogoods is controlled via option
--loops. In the default setting, loop nogoods are cre-
ated for individual unfounded atoms, as shown in [40].

clasp’s primary decision heuristics, selectable via
option --heuristic, use look-back strategies de-
rived from corresponding CDCL-based approaches in
SAT, viz., vsids [84], berkmin [62], and vmtf [90].
The main goal of such heuristics is selecting variables
that contributed to recent conflicts. To this end, they
maintain an activity score for each variable, which
is primarily influenced by conflict resolution and de-
cayed periodically. The major difference between the
approaches of berkmin and vsids lies in the scope of
variables considered during decision making. While
vsids selects the free variable that is globally most ac-
tive, berkmin restricts the selection to variables belong-
ing to the most recently recorded but yet unsatisfied
conflict nogood. Although the look-back heuristics im-
plemented in clasp are modeled after the correspond-
ing CDCL-based approaches, one important difference
is that clasp optionally also scores variables contained
in loop nogoods. In case of berkmin, it may also se-
lect a free variable belonging to a recently recorded
loop nogood. Finally, we note that clasp’s heuristic can

8

also be based upon look-ahead strategies (that extend
unit propagation by failed-literal detection [32]). This
makes sense whenever clasp is run without conflict-
driven learning, operating similar to smodels.

Once a decision variable has been selected, a sign
heuristic decides about its truth value. The main cri-
terion for look-back heuristics is to satisfy the great-
est number of conflict nogoods. Initially and also for
tie-breaking, clasp does sign selection based on a vari-
able’s type: atom variables are preferentially set to
false, while body variables are made true. This aims at
maximizing the number of resulting implications. An-
other sign heuristic implemented in clasp is progress
saving [87]. The idea is as follows: upon backjumping
(or restarting), the recent truth values of retracted vari-
ables are saved, except for those assigned at the last
decision level. These saved values are then used for
sign selection. The intuition behind this strategy is that
the assignments made prior to the last decision level
did not lead to a conflict and may have satisfied some
subproblems. Hence, re-establishing them may help
to avoid solving subproblems multiple times. Progress
saving is invoked with option --save-progress;
its computational impact, however, depends heavily on
the structure of the application at hand.

The robustness of clasp is boosted by multiple ad-
vanced restart strategies, namely, geometric, fixed-
interval, Luby-style, or a nested policy (see [46,50]
for details), configurable via option --restarts.
Usually, restart strategies are based on the global
number of conflicts. Beyond that, clasp features
local restarts [91], which can be activated with
--local-restarts. Here, one counts the num-
ber of conflicts per decision level in order to measure
the difficulty of subproblems locally. Furthermore, a
bounded approach to restarting (and backjumping)
is used when enumerating answer sets, as described
in [47]. To complement its more determined search,
clasp also allows for initial randomized runs [27], typ-
ically with a small restart threshold, in the hope to ex-
tract putatively interesting nogoods. Finally, it is worth
noting that, despite the fact that recent SAT solvers use
rather aggressive restart strategies, clasp still defaults
to a more conservative geometric policy (cf. [27]) be-
cause it performs better on ASP-specific benchmarks.

To limit the number of nogoods stored simultane-
ously, recorded nogoods are periodically subject to
deletion. Complementing look-back heuristics, clasp’s
nogood deletion strategy associates an activity with
each recorded nogood, which is incremented whenever
the nogood is used for conflict resolution. Borrowing

ideas from minisat [27] and berkmin [62], the initial
threshold on the number of stored nogoods is calcu-
lated from the size of an input program and increased
by a certain factor upon each restart. (The defaults for
the maximum size of clasp’s dynamic nogood database
and its growth can be overridden via --deletion.)
As soon as the current threshold is exceeded, deletion
is initiated and removes up to 75% of the recorded
nogoods. Nogoods that are currently locked (because
they serve as antecedents) or whose activities signif-
icantly exceed the average activity are exempt from
deletion. However, the nogoods that are not deleted
have their activities decayed, which gives preference
to those used in the future. All in all, clasp’s nogood
deletion strategy aims at limiting the overall number
of stored nogoods, while keeping the relevant and re-
cently recorded ones. This likewise applies to conflict
and loop nogoods.

5. claspD

In fact, many important problems in KRR have an
elevated degree of complexity, calling for expressive
solving paradigms being able to capture problems at
the second level of the polynomial hierarchy (cf. [92]
for a survey). One possibility to deal with such a prob-
lem consists in expressing it as a Quantified Boolean
Formula (QBF) and then to use some QBF solver to
compute its solutions. Another approach is furnished
by ASP solvers dealing with disjunctive logic pro-
grams, that is, logic programs allowing for disjunction
in the heads and (default) negation in the bodies of
rules.

For addressing NPNP -problems, we built an exten-
sion of clasp dealing with disjunctive logic programs.
The resulting ASP solver is called claspD [20]. It in-
herits many features from clasp, such as conflict-driven
learning, lookback-based decision heuristics, restart
policies, watched literals, etc.

The actual search for answer sets can be further dis-
tinguished into a generating part, providing answer set
candidates, and a testing part, verifying the provided
candidates. Since both of these tasks can be computa-
tionally complex, they are performed by associated in-
ference engines, implemented in claspD by feeding the
core search module from clasp with particular Boolean
constraints. While the generator traverses the search
space for answer sets, communicating its current state
through an assignment to the tester, the latter checks
for unfounded sets and reports them back via nogoods.

9

As shown in [20], an approximative unfounded-set de-
tecting procedure is integrated into propagation and
thus continuously applied during the generation of an-
swer set candidates. In contrast, exhaustive checks for
so-called non-head-cycle-free components (cf. [20]),
are performed only selectively, e.g., if an assignment is
total, due to their high computational cost.

The input language of claspD consists of logic
programs in gringo’s output format. Like clasp, also
claspD supports answer set enumeration [47] and op-
timization. It also handles cardinality and weight con-
straints [95], currently through compilation.

Given that claspD evolved from an earlier branch of
clasp, it is planned to re-merge it into clasp in the mid-
future.

6. claspar

Despite the progress of sequential ASP Solving
technology, only little advancement is observed in
the parallel setting.9 This is deplorable in view of
the rapidly growing availability of clustered, multi-
processor, and/or multi-core computing devices. We
addressed this shortcoming by building a distributed
version of clasp, focusing on the parallelization of
search. The resulting distributed ASP solver is called
claspar [28,94]. Our approach builds upon the Mes-
sage Passing Interface (MPI; [67]), realizing commu-
nication and data exchange between computing units
via message passing. Interestingly, MPI abstracts from
the actual hardware and lets us execute our system on
clusters as well as multi-processor and/or multi-core
machines.

We aimed at a simple and transparent approach in
order to be able to take advantage of the high perfor-
mance offered by modern off-the-shelf ASP solvers
such as clasp. To this end, we have chosen sim-
ple master-worker architectures, in which each worker
consists of an ASP solver along with an attached com-
munication module. The solver is linked to its com-
munication module via an elementary interface requir-
ing only marginal modifications to the solver. All ma-
jor communication is initiated by the workers’ com-
munication modules, exchanging messages with the
master in an asynchronous way. The specific com-
munication structure can be configured via the option
--topology, allowing for flat and more complex hi-
erarchical architectures.

9Earlier attempts include [88,4,65,66].

Although we tried to keep our design generic, we
took advantage of some design features of clasp, as
outlined in the previous section. In fact, clasp ex-
tends the static concept of a top-level by addition-
ally providing a dynamic variant referred to as root-
level [27]. As with the top-level, conflicts within the
root-level cannot be resolved given that all of its vari-
able assignments are precluded from backtracking.
We build upon this feature for splitting the search
space. Splitting is accomplished according to a so-
called guiding path [100], the sequence of all non-
deterministic choices. Given a root-level i−1, a guid-
ing path (v1, . . . , vi−1, vi, . . . , vn) can be divided into
a prefix (v1, . . . , vi−1) of non-splittable variables and
a postfix (vi, . . . , vn) of splittable variables. We can
split the search space at the first splittable variable
by incrementing the root-level by one and dissociat-
ing a guiding path composed of the first i−1 vari-
ables and the complement of the ith variable, yield-
ing (v1, . . . , vi−1, vi). Note that the local assignment
remains unchanged, and only the root-level is incre-
mented to i. We have chosen to split at the first split-
table variable because, first, this results in cutting off
the largest part of the search space and, second, this
way backjumping is least restricted.

Alternatively claspar allows for running different
configurations that may either split the search space
among each other or compete against each other by
addressing the very same search space. To this end,
a portfolio of different clasp configurations is sup-
plied to claspar via option --portfolio-file.
The different configurations are then assigned ei-
ther randomly or in a round-robin fashion (via
--portfolio-mode=<mode>).

Upon enumerating answer sets, (locally) using
the scheme in [47], the assignment can contain
complements of choices from previously enumer-
ated answer sets. Such complements u1, . . . , uj in-
dicate that the search spaces for answer sets con-
taining (v1, . . . , vi−1) and at least one of u1, . . . , uj
have already been explored. In order to avoid rep-
etitions, it is thus important to pass guiding path
(v1, . . . , vi−1, u1, . . . , uj , vi) in response to a split re-
quest. This refinement for repetition-free answer set
enumeration is implemented in claspar.

As of now, claspar supports the reasoning modes
enumeration and optimization. Optimization involves
the exchange of putative optima between solver in-
stances. This allows claspar to abandon futile search
whenever the local value of the objective function is
worse than the value of solutions found by other solver

10

instances. A more elaborate exchange of information
is that of conflict nogoods. The latter is controlled by
two options:

--clause-sharing allows for configuring dif-
ferent strategies for clause exchange, for instance,
depending upon different selection criteria of no-
goods to be exchanged and the number of no-
goods per communication.

--clause-distribution specifies the commu-
nication architecture for nogood exchange. This
can be local, depending on the master/worker
topology, organized as a hypercube (work nodes
are arranged in a hypercube and clauses are ex-
changed along the edges), and all to all as well as
no exchange at all.

See [42] for more details on the most recent advances
in claspar.

7. clingo

For ASP solving, a program is first grounded by
gringo and the resulting propositional program is then
passed to clasp. This is usually done via a UNIX
pipeline:

$ gringo myprogram | clasp

An alternative to this is offered by clingo, combining
gringo and clasp in a monolithic system. The above
call then reduces to:

$ clingo myprogram

clingo supports all features and options of gringo and
clasp.

8. iclingo

Many real-world applications, like Planning or
Model Checking, have associated PSPACE-decision
problems. For instance, the plan existence problem of
deterministic planning is PSPACE-complete [11]. But
the problem of whether a plan having a length bounded
by a given polynomial exists is in NP. In the setting
of ASP, such problems can thus be dealt with in a
bounded way by considering in turn one problem in-
stance after another, gradually increasing the bound on
the solution size.

As an example, let us consider simplistic STRIPS
Planning. Table 7 gives a simple planning problem in-

fluent(p). fluent(q). fluent(r).

action(a). action(b).
pre(a,p). pre(b,q).
add(a,q). add(b,r).
del(a,p). del(b,q).

init(p). query(r).

Table 7
A simple STRIPS Planning problem in ASP facts

volving three fluents, p, q, and r, and two actions, a
and b, having precondition p and q as well as effects
q, ¬p and r, ¬q, respectively. The initial situation ful-
fills p, and the goal is to satisfy r.

This planning problem can be solved by the ASP en-
coding in Table 8. First of all, observe that the length

time(1..t).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not ocdel(F,T),
time(T).

holds(F,T) :- occ(A,T), add(A,F).
ocdel(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,t).

Table 8
An ASP encoding of STRIPS Planning

of a plan is restricted to t, provided when calling the
grounder. The truth of fluents at individual time steps is
(partially) described by predicate holds/2. The car-
dinality constraint requires that exactly one action oc-
curs at each time step. The subsequent integrity con-
straint stipulates that, if an action occurs at time T, its
precondition must hold at T-1. The three following
rules deal with progression over time. The first rule
states that fluent values remain unchanged unless ev-
idence to the contrary. The two remaining rules spec-
ify the effect of actions. Conflicts between the first and
third rule are resolved in favor of the more specific rule,
leading to the exception not ocdel(F,T) within
the general rule. Finally, the last integrity constraint en-
sures that only plans are accepted that satisfy the goal
at the last time step t.

11

An answer to this planning problem is usually found
by appeal to iterative deepening search. That is, one
first checks whether the program has an answer set
for t=1, if not, the same is done for t=2, and so
on. For a given t, this approach re-processes all rules
parametrized with T multiple times, while the final in-
tegrity constraint is dealt with only once.

Unlike this, we aim at computing the answers sets
in an incremental fashion, and thus providing an in-
cremental approach to both grounding and solving in
ASP. Our goal is to avoid redundancy by gradually
processing the extensions to a problem rather than re-
peatedly re-processing the entire extended problem. To
this end, we take advantage of incremental logic pro-
grams [39], consisting of a triple (B,P,Q) of logic
programs, among which P and Q contain a (single)
parameter k ranging over the natural numbers. In view
of this, we also denote P and Q by P [k] and Q[k].
The base program B is meant to describe static knowl-
edge, independent of parameter k. The role of P is
to capture knowledge accumulating with increasing k,
whereas Q is specific for each value of k. Provided all
programs are “modularly composable” (cf. [39]), we
are interested in finding an answer set of the program
B ∪

⋃
1≤j≤i P [k/j]∪Q[k/i] for some (minimum) in-

teger i ≥ 1.
For illustration, let us transform the above ASP

planning encoding into an incremental logic program.
Clearly, the problem instance in Table 7 belongs to the
static knowledge in B as well as the holds/2 defi-
nition concerning the initial situation. In practice, this
is declared by the statement #base. In our simple
example, the cumulative part consists of all rules pos-
sessing variable T in Table 8. As shown in Table 9,
this part is indicated by #cumulative t., declar-
ing t as the corresponding parameter. Note that t re-
places all occurrences of T and makes the predicate
time/1 obsolete. Finally, the volatile part is indicated
by #volatile t. and applies to the query only.
A comprehensive documentation is found in gringo’s
manual [38].

Incremental programs are solved by the incremen-
tal ASP system iclingo [39], built upon the libraries
of gringo and clasp. Unlike the standard proceeding,
iclingo has to operate in a “stateful way”. That is, it
has to maintain its previous (grounding and solving)
state for processing the current program slices. In this
way, all components, B, P [j], and Q[i] are dealt with
only once, and duplicated work is avoided when in-
creasing i. As regards grounding, iclingo reduces ef-
forts by avoiding reproducing previous ground rules.

#base.

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.
:- occ(A,t), pre(A,F), not holds(F,t-1).

holds(F,t) :- holds(F,t-1), not ocdel(F,t).
holds(F,t) :- occ(A,t), add(A,F).
ocdel(F,t) :- occ(A,t), del(A,F).

#volatile t.

:- query(F), not holds(F,t).

Table 9
An incremental ASP encoding of STRIPS Planning

Regarding solving, it reduces redundancy, in partic-
ular, if a learning ASP solver such as clasp is used,
given that previously gathered information on heuris-
tics, conflicts, or loops, respectively, remains avail-
able and can thus be continuously exploited. In fact,
the latter is configurable via options --ilearnt and
--iheuristic that allow for either keeping or for-
getting learned nogoods and heuristic values, respec-
tively. The interested reader is referred to [39] for a de-
tailed description of iclingo’s features, semantics, and
implementation.

Meanwhile iclingo has been successfully employed
in various settings. For instance, for implementing
action description languages in coala ([35]; cf. Sec-
tion 12) and PDDL-style planning in plasp ([74]; cf.
Section 12). Also, we used it as back-end of fmc2iasp
([53]; cf. Section 12) for implementing a competitive
system for finite model generation.

9. clingcon

Certain applications are more naturally modeled by
mixing Boolean with non-Boolean constructs, e.g., ac-
counting for resources, fine timings, or functions over
finite domains. In other words, non-Boolean constructs
make sense whenever the involved variables have large
domains. This is addressed by the hybrid ASP solver
clingcon [52], combining the Boolean modeling ca-
pacities of ASP with Constraint Processing (CP; [19,
89]).10 To this end, clingcon adopts techniques from

10Groundbreaking work on enhancing ASP with CP techniques
was conducted in [8,82,83].

12

the area of SAT-Modulo-Theories (SMT), combining
conflict-driven learning with theory propagation by
means of a CP solver. For the latter, we have chosen
gecode [56] as black box constraint solver. clingcon
follows the so-called lazy approach of advanced SMT
solvers by abstracting from the constraints in a spe-
cialized theory [85]. The idea is as follows. The ASP
solver passes the portion of its (partial) Boolean as-
signment associated with constraints to a CP solver,
which then checks these constraints against its theory
via constraint propagation. As a result, it either sig-
nals unsatisfiability or, if possible, extends the Boolean
assignment by further constraint atoms. For conflict-
driven learning within the ASP solver, however, each
assigned constraint atom must be justified by a set of
(constraint) atoms providing a “reason” for the under-
lying inference. As regards the language, this approach
also follows the one taken by SMT solvers in letting
the ASP solver deal with the atomic, that is, Boolean
structure of the program, while a CP solver addresses
the “sub-atomic level” by dealing with the constraints
associated with constraint atoms.

To illustrate this, consider the example in Table 10.
This program describes a balance with two buckets, a
and b, at each end. According to the cardinality con-
straint, we must pour a certain amount of water into ex-
actly one of the buckets at each time point. The amount
of added water may vary between 100 and 300. The
balance is down at one bucket’s side, if the bucket con-
tains more water than the other; otherwise, it is up. Ini-
tially, bucket a is empty while b contains 100 units. The
goal is to find sequences of pour actions making the
side of bucket a be down after t time steps.

The program contains regular and constraint atoms.
The latter type of predicates is denoted by relations,
preceded with the symbol $. Hence, the amount of wa-
ter is completely abstracted from the ASP solver and is
exclusively handled by the constraint solver. Thus, the
capacity can be modeled using any precision and any
domain size without interfering with the grounder. In
fact, after instantiation, the ASP solver does not distin-
guish between the regular atom pour(b,1) and the
constraint atom

volume(b,2) $== volume(b,1)+amount(b,1).

It assigns Boolean values to both types of atoms.
However, depending on the assigned truth value, the
CP solver must assign integer values to the con-
straint variables, volume(b,2), volume(b,1),
and amount(b,1), such that the equation satisfies
the assigned truth value.

10. claspfolio

As a matter of fact, advanced Boolean constraint
technology, as used in clasp, is sensitive to parame-
ter configuration. In fact, we are unaware of any true
application on which clasp is run in its default set-
tings. Inspired by satzilla [99], we address the parame-
ter sensitivity in ASP solving by exploring a portfolio-
based approach. To this end, we concentrate on clasp
and map a collection of benchmark features onto an
element of a portfolio of distinct clasp configurations.
This mapping is realized by appeal to Support Vector
Regression (SVR; [7]).

Given a logic program, the goal of claspfolio [41]
is to automatically select a suitable configuration of
clasp. In view of the huge configuration space, the at-
tention is limited to some (manually) selected config-
urations belonging to a portfolio. Each configuration
consists of certain clasp options. To approximate the
behavior of such a configuration, claspfolio applies a
model-based approach predicting solving performance
from particular features of the input. The portfolio
used by claspfolio (0.8.0) contains 12 clasp configura-
tions, included because of their complementary perfor-
mances on the training set. The options of these config-
urations mainly configure the preprocessing, the deci-
sion heuristic, and the restart policy of clasp in differ-
ent ways. This provides us with a collection of solving
strategies that have turned out to be useful on a range
of existing benchmarks. In fact, the hope is that some
configuration is (a) well-suited for a user’s application
and (b) automatically selected by claspfolio in view of
similarities to the training set.

As shown in Figure 4, ASP solving with claspfolio
consists of four parts.

claspfolio

gringo claspre SVR clasp

Models

Fig. 4. Architecture of claspfolio

First, the ASP grounder gringo instantiates a logic
program. Then, a light-weight version of clasp, called
claspre, is used to extract features and possibly even
solve (too simple) instances. If the instance was not
solved by claspre, the extracted features are mapped to
a score for each configuration in the portfolio. Finally,
clasp is run for solving, using the configuration with
the highest score.

13

$domain(0..10000).
time(0..t).
bucket(a).
bucket(b).

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

100 $<= amount(B,T) :- pour(B,T), T < t.
amount(B,T) $<= 300 :- pour(B,T), T < t.
amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) + amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B), bucket(C), time(T).
up(B,T) :- not down(B,T), bucket(B), time(T).

volume(a,0) $== 0.
volume(b,0) $== 100.

:- up(a,t).

Table 10
Pouring into buckets on a balance

11. coala

Action languages provide a compact formal model
for describing dynamic domains [59], being central
to many applications like model checking, planning,
robotics, etc. Moreover, action languages can be imple-
mented rather efficiently through compilation to ASP
or SAT. Our system coala takes advantage of this by
offering a variety of different compilation techniques
for several action languages.

coala originates from al2asp, constituting the heart
of the BioC system [24] used for reasoning about bio-
logical models in action language CTAID [23]: al2asp
compiles CTAID to C, which is in turn mapped to ASP
via the transformation in [78]. coala extends the ca-
pacities of al2asp in several ways. First, it adds cer-
tain features of C+ [60] and provides full support of
B [97] (and AL). Second, it offers different compila-
tion schemes. Apart from a priori bounded encodings
using standard ASP systems, coala furnishes incre-
mental encodings that can be used in conjunction with
the incremental ASP system iclingo. Moreover, coala
distinguishes among forward and backward (incremen-
tal) encodings, depending on whether trajectories are
successively extended from initial states or whether
they are built backwards starting from final states.
Third, coala supports all action query languages,P ,Q,
and R, in [59]. Fourth, coala allows for posing LTL-
like queries, following [68]. Finally, coala offers the

usage of first-order variables that are treated by the un-
derlying ASP grounder. Optionally, type checking for
variables can be enabled. coala is implemented in C++
and can also be used as a library.

12. Potassco Labs

The Potassco Labs suite comprises programs that
are either small utilities, projects still under develop-
ment, or not driven to the full maturity as the ones de-
scribed above. Among them, we (currently) find:

dlvtogringo is a tool converting output generated by
“dlv -instantiate” to gringo’s input lan-
guage.

fmc2iasp is used for computing finite models of first-
order formulas. The input formulas are written in
TPTP format. FM-Darwin is needed for clausi-
fication and flattening of the input. iclingo is
used for finding answer sets of the logic program
formed by fmc2iasp. An answer set represents a
finite model of the input.

inca is a preprocessor compiling variables and con-
straints over finite domains into logic programs.
It offers various options leading to (non-ground)
enodings that can be grounded by gringo.
Details can be found in [22].

lp2txt is a simple script that transforms ground lparse
output format back into human-readable format.

14

plasp is an interpreter for a subset of the Planning Do-
main Definition Language (PDDL). Since it uses
ASP for the actual search, it can also be seen as a
PDDL to ASP compiler. For solving, a modified
version of iclingo is used.
Details can be found in [74,43].

pyngo is a bottom-up ASP grounder written in Python
with the goal to provide a well-documented
grounder exploring bottom-up grounding and re-
lated techniques.

sbass detects and breaks syntactic symmetries in logic
programs by adding respective constraints.
Details can be found in [21].

xorro exploits XOR constraints to calculate samples
with near uniform distribution, inspired by a sim-
ilar approach in the field of SAT [63]. Hence, it
allows for calculating a few answer sets represen-
tative for all answer sets of a logic program. This
is particularly useful if the computation of all an-
swer sets is practically infeasible.

xpanda is a preprocessor compiling variables and con-
straints over finite domains into logic programs
that can be grounded by gringo. Its compilation
methods are less efficient yet simpler than the
ones of inca.
Details can be found in [37].

misc is not a particular tool, but a collection of miscel-
laneous helper scripts and files.

And there is more to come in the future (see below).

13. Discussion

The goal of the Potassco initiative is to furnish an
open access to tools for ASP. This is why Potassco
is hosted at Sourceforge, a prime location for down-
loading and developing free open source software. In
this sense, Potassco is meant as a community plat-
form for users and developers of ASP software. In ad-
dition to the available sources and binaries for Linux,
Macintosh11, and Windows at http://potassco.
sourceforge.net, most of the aforementioned
systems are meanwhile also available as Debian and
Ubuntu packages and can thus be easily integrated in
existing Linux environments.12

Upcoming extensions to Potassco include a reactive
ASP system, oclingo, that allows for incorporating on-
line data streams (and requests) coming from external

11Thanks to Gregory Gelfond, ASU!
12Thanks to Thomas Krennwallner, TU Vienna!

sources (see [34]), a Linux package configuration sys-
tem, aspcud, a pre-processor, metasp, offering com-
plex optimization capacities, supporting, for instance,
inclusion-based minimization or Pareto efficiency, an
extension of gringo’s input language with dlv-style ag-
gregates and weak constraints, and last but not least
the new construction series 2.0 of clasp is close to be
released, featuring multi-threading and advanced opti-
mization techniques.

Also, we would like to point the interested reader
to the ASP benchmark repository at http://
asparagus.cs.uni-potsdam.de. It’s a great
resource for learning about how to encode problems in
ASP and thus of particular value for teaching ASP.

Acknowledgments

This work was supported by the German Science
Foundation (DFG) under grants SCHA 550/8-1 and -2.

The authors are grateful to Arne König, Christian
Drescher, Orkunt Sabuncu, Sven Thiele, and Torsten
Grote for their support and contributions to the overall
efforts of Potassco. Moreover, the authors are indebted
to Marcello Balduccini, Mauricio Osorio, and Stefan
Woltran for valuable comments on the manuscript of
this paper.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[2] K. Apt, H. Blair, and A. Walker. Towards a theory of declara-
tive knowledge. In J. Minker, editor, Foundations of Deductive
Databases and Logic Programming, chapter 2, pages 89–148.
Morgan Kaufmann Publishers, 1987.

[3] Y. Babovich and V. Lifschitz. Computing answer sets
using program completion. Unpublished draft; avail-
able at http://www.cs.utexas.edu/users/tag/
cmodels.html, 2003.

[4] M. Balduccini, E. Pontelli, O. El-Khatib, and H. Le. Issues in
parallel execution of non-monotonic reasoning systems. Paral-
lel Computing, 31(6):608–647, 2005.

[5] C. Baral. Knowledge Representation, Reasoning and Declara-
tive Problem Solving. Cambridge University Press, 2003.

[6] C. Baral, G. Brewka, and J. Schlipf, editors. Proceedings of
the Ninth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07), volume 4483 of Lec-
ture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[7] D. Basak, S. Pal, and D. Patranabis. Support vector regression.
Neural Information Processing — Letters and Reviews, 11(10),
2007.

15

[8] S. Baselice, P. Bonatti, and M. Gelfond. Towards an integra-
tion of answer set and constraint solving. In M. Gabbrielli and
G. Gupta, editors, Proceedings of the Twenty-first International
Conference on Logic Programming (ICLP’05), volume 3668
of Lecture Notes in Computer Science, pages 52–66. Springer-
Verlag, 2005.

[9] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications. IOS Press, 2009.

[10] G. Boenn, M. Brain, M. de Vos, and J. Fitch. Automatic com-
position of melodic and harmonic music by answer set pro-
gramming. In Garcia de la Banda and Pontelli [33], pages 160–
174.

[11] T. Bylander. The computational complexity of propositional
STRIPS planning. Artificial Intelligence, 69(1-2):165–204,
1994.

[12] K. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, pages 293–322. Plenum Press,
1978.

[13] O. Cliffe, M. de Vos, M. Brain, and J. Padget. ASPVIZ: Declar-
ative visualisation and animation using answer set program-
ming. In Garcia de la Banda and Pontelli [33], pages 724–728.

[14] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity
and expressive power of logic programming. ACM Computing
Surveys, 33(3):374–425, 2001.

[15] A. Darwiche and K. Pipatsrisawat. Complete algorithms. In
Handbook of Satisfiability [9], chapter 3, pages 99–130.

[16] M. de Vos and T. Schaub, editors. Proceedings of the Work-
shop on Software Engineering for Answer Set Programming
(SEA’07), Department of Computer Science, University of
Bath, Technical Report Series, 2007.

[17] M. de Vos and T. Schaub, editors. Proceedings of the Second
Workshop on Software Engineering for Answer Set Program-
ming (SEA’09), Department of Computer Science, University
of Bath, Technical Report Series, 2009.

[18] J. Delgrande and W. Faber, editors. Proceedings of the Eleventh
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’11), Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2011. To appear.

[19] R. Dechter. Constraint Processing. Morgan Kaufmann Pub-
lishers, 2003.

[20] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub. Conflict-driven disjunctive an-
swer set solving. In G. Brewka and J. Lang, editors, Proceed-
ings of the Eleventh International Conference on Principles
of Knowledge Representation and Reasoning (KR’08), pages
422–432. AAAI Press, 2008.

[21] C. Drescher, O. Tifrea, and T. Walsh. Symmetry-breaking an-
swer set solving. In M. Balduccini and S. Woltran, editors, Pro-
ceedings of ICLP’10 Workshop on Answer Set Programming
and Other Computing Paradigm, 2010.

[22] C. Drescher and T. Walsh. A translational approach to con-
straint answer set solving. In Theory and Practice of Logic
Programming. Twenty-sixth International Conference on Logic
Programming (ICLP’10) Special Issue, volume 10(4-6), pages
465–480. Cambridge University Press, 2010.

[23] S. Dworschak, S. Grell, V. Nikiforova, T. Schaub, and J. Selbig.
Modeling biological networks by action languages via answer
set programming. Constraints, 13(1-2):21–65, 2008.

[24] S. Dworschak, T. Grote, A. König, T. Schaub, and P. Veber. The
system BioC for reasoning about biological models in action
language C. In Proceedings of the Twentieth International Con-
ference on Tools with Artificial Intelligence (ICTAI’08), vol-
ume 1, pages 11–18. IEEE Computer Society Press, 2008.

[25] N. Eén and A. Biere. Effective preprocessing in SAT through
variable and clause elimination. In F. Bacchus and T. Walsh,
editors, Proceedings of the Eigth International Conference on
Theory and Applications of Satisfiability Testing (SAT’05), vol-
ume 3569 of Lecture Notes in Computer Science, pages 61–75.
Springer-Verlag, 2005.

[26] N. Eén and N. Sörensson. Temporal induction by incremental
SAT solving. Electronic Notes in Theoretical Computer Sci-
ence, 89(4), 2003.

[27] N. Eén and N. Sörensson. An extensible SAT-solver. In
E. Giunchiglia and A. Tacchella, editors, Proceedings of the
Sixth International Conference on Theory and Applications of
Satisfiability Testing (SAT’03), volume 2919 of Lecture Notes
in Computer Science, pages 502–518. Springer-Verlag, 2004.

[28] E. Ellguth, M. Gebser, M. Gusowski, R. Kaminski, B. Kauf-
mann, S. Liske, T. Schaub, L. Schneidenbach, and B. Schnor. A
simple distributed conflict-driven answer set solver. In Erdem
et al. [29], pages 490–495.

[29] E. Erdem, F. Lin, and T. Schaub, editors. Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lec-
ture Notes in Artificial Intelligence. Springer-Verlag, 2009.

[30] E. Erdem and F. Türe. Efficient haplotype inference with an-
swer set programming. In D. Fox and C. Gomes, editors, Pro-
ceedings of the Twenty-third National Conference on Artificial
Intelligence (AAAI’08), pages 436–441. AAAI Press, 2008.

[31] F. Fages. Consistency of Clark’s completion and the existence
of stable models. Journal of Methods of Logic in Computer
Science, 1:51–60, 1994.

[32] J. Freeman. Improvements to propositional satisfiability search
algorithms. PhD thesis, University of Pennsylvania, 1995.

[33] M. Garcia de la Banda and E. Pontelli, editors. Proceedings of
the Twenty-fourth International Conference on Logic Program-
ming (ICLP’08), volume 5366 of Lecture Notes in Computer
Science. Springer-Verlag, 2008.

[34] M. Gebser, T. Grote, R. Kaminski, and T. Schaub. Reactive
answer set programming. In Delgrande and Faber [18]. To
appear.

[35] M. Gebser, T. Grote, and T. Schaub. Coala: A compiler from
action languages to ASP. In Janhunen and Niemelä [73], pages
360–364.

[36] M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel,
S. Thiele, and P. Veber. Repair and prediction (under inconsis-
tency) in large biological networks with answer set program-
ming. In F. Lin and U. Sattler, editors, Proceedings of the
Twelfth International Conference on Principles of Knowledge
Representation and Reasoning (KR’10), pages 497–507. AAAI
Press, 2010.

[37] M. Gebser, H. Hinrichs, T. Schaub, and S. Thiele. xpanda: A
(simple) preprocessor for adding multi-valued propositions to
ASP. In U. Geske and A. Wolf, editors, Proceedings of the
Twenty-third Workshop on (Constraint) Logic Programming
(WLP’09), 2009.

16

[38] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski,
T. Schaub, and S. Thiele. A user’s guide to gringo, clasp,
clingo, and iclingo. Available at http://potassco.
sourceforge.net.

[39] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski,
T. Schaub, and S. Thiele. Engineering an incremental ASP
solver. In Garcia de la Banda and Pontelli [33], pages 190–205.

[40] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. On
the implementation of weight constraint rules in conflict-driven
ASP solvers. In Hill and Warren [69], pages 250–264.

[41] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schnei-
der, and S. Ziller. A portfolio solver for answer set program-
ming: Preliminary report. In Delgrande and Faber [18]. To
appear.

[42] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, and
B. Schnor. Cluster-based asp solving with claspar. In Del-
grande and Faber [18]. To appear.

[43] M. Gebser, R. Kaminski, M. Knecht, and T. Schaub. plasp: A
compiler from PDDL to ASP. In Delgrande and Faber [18]. To
appear.

[44] M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances
in gringo series 3. In Delgrande and Faber [18]. To appear.

[45] M. Gebser, R. Kaminski, M. Ostrowski, T. Schaub, and
S. Thiele. On the input language of ASP grounder gringo. In
Erdem et al. [29], pages 502–508.

[46] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp:
A conflict-driven answer set solver. In Baral et al. [6], pages
260–265.

[47] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration. In Baral et al. [6],
pages 136–148.

[48] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving. In M. Veloso, editor,
Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence (IJCAI’07), pages 386–392. AAAI
Press/The MIT Press, 2007.

[49] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Ad-
vanced preprocessing for answer set solving. In M. Ghallab,
C. Spyropoulos, N. Fakotakis, and N. Avouris, editors, Pro-
ceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[50] M. Gebser, B. Kaufmann, and T. Schaub. The conflict-driven
answer set solver clasp: Progress report. In Erdem et al. [29],
pages 509–514.

[51] M. Gebser, B. Kaufmann, and T. Schaub. Solution enumera-
tion for projected Boolean search problems. In W. van Hoeve
and J. Hooker, editors, Proceedings of the Sixth International
Conference on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Prob-
lems (CPAIOR’09), volume 5547 of Lecture Notes in Computer
Science, pages 71–86. Springer-Verlag, 2009.

[52] M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer
set solving. In Hill and Warren [69], pages 235–249.

[53] M. Gebser, O. Sabuncu, and T. Schaub. An incremental answer
set programming based system for finite model computation.
In Janhunen and Niemelä [73], pages 169–181.

[54] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder
for answer set programming. In Baral et al. [6], pages 266–271.

[55] M. Gebser, T. Schaub, S. Thiele, and P. Veber. Detecting
inconsistencies in large biological networks with answer set
programming. Theory and Practice of Logic Programming,
11(2):1–38, 2011.

[56] Gecode: Generic constraint development environment, 2006.
Available from http://www.gecode.org.

[57] M. Gelfond. Answer sets. In Lifschitz et al. [79], chapter 7,
pages 285–316.

[58] M. Gelfond and V. Lifschitz. The stable model semantics for
logic programming. In R. Kowalski and K. Bowen, editors,
Proceedings of the Fifth International Conference and Sympo-
sium of Logic Programming (ICLP’88), pages 1070–1080. The
MIT Press, 1988.

[59] M. Gelfond and V. Lifschitz. Action languages. Electronic
Transactions on Artificial Intelligence, 3(6):193–210, 1998.

[60] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner.
Nonmonotonic causal theories. Artificial Intelligence, 153(1-
2):49–104, 2004.

[61] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set pro-
gramming based on propositional satisfiability. Journal of Au-
tomated Reasoning, 36(4):345–377, 2006.

[62] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT
solver. In Proceedings of the Fifth Conference on Design, Au-
tomation and Test in Europe (DATE’02), pages 142–149. IEEE
Press, 2002.

[63] C. Gomes, A. Sabharwal, and B. Selman. Near-uniform sam-
pling of combinatorial spaces using XOR constraints. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Proceedings of
the Twentieth Annual Conference on Neural Information Pro-
cessing Systems (NIPS’06), pages 481–488. MIT Press, 2006.

[64] G. Grasso, S. Iiritano, N. Leone, V. Lio, F. Ricca, and F. Scalise.
An ASP-based system for team-building in the Gioia-Tauro
seaport. In M. Carro and R. Peña, editors, Proceedings of
the Twelfth International Symposium on Practical Aspects of
Declarative Languages (PADL’10), volume 5937 of Lecture
Notes in Computer Science, pages 40–42. Springer-Verlag,
2010.

[65] J. Gressmann, T. Janhunen, R. Mercer, T. Schaub, S. Thiele,
and R. Tichy. Platypus: A platform for distributed answer
set solving. In C. Baral, G. Greco, N. Leone, and G. Ter-
racina, editors, Proceedings of the Eighth International Con-
ference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’05), volume 3662 of Lecture Notes in Artificial Intel-
ligence, pages 227–239. Springer-Verlag, 2005.

[66] J. Gressmann, T. Janhunen, R. Mercer, T. Schaub, S. Thiele,
and R. Tichy. On probing and multi-threading in platypus. In
G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors,
Proceedings of the Seventeenth European Conference on Arti-
ficial Intelligence (ECAI’06), pages 392–396. IOS Press, 2006.

[67] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced
Features of the Message-Passing Interface. The MIT Press,
1999.

[68] K. Heljanko and I. Niemelä. Bounded LTL model checking
with stable models. Theory and Practice of Logic Program-
ming, 3(4-5):519–550, 2003.

[69] P. Hill and D. Warren, editors. Proceedings of the Twenty-fifth
International Conference on Logic Programming (ICLP’09),
volume 5649 of Lecture Notes in Computer Science. Springer-
Verlag, 2009.

17

[70] R. Ierusalimschy. Programming in Lua. lua.org, 2006.
[71] H. Ishebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub. An-

swer set vs integer linear programming for automatic synthe-
sis of multiprocessor systems from real-time parallel programs.
Journal of Reconfigurable Computing, 2009.

[72] T. Janhunen. Intermediate languages of ASP systems and tools.
In de Vos and Schaub [16], pages 12–25. ISSN 1740-9497.

[73] T. Janhunen and I. Niemelä, editors. Proceedings of the
Twelfth European Conference on Logics in Artificial Intelli-
gence (JELIA’10), volume 6341 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2010.

[74] M. Knecht. Efficient domain-independent planning using
declarative programming. M.Sc. thesis, Institute for Informat-
ics, University of Potsdam, 2009.

[75] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello. The DLV system for knowledge represen-
tation and reasoning. ACM Transactions on Computational
Logic, 7(3):499–562, 2006.

[76] V. Lifschitz. Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[77] V. Lifschitz and A. Razborov. Why are there so many loop for-
mulas? ACM Transactions on Computational Logic, 7(2):261–
268, 2006.

[78] V. Lifschitz and H. Turner. Representing transition systems
by logic programs. In M. Gelfond, N. Leone, and G. Pfeifer,
editors, Proceedings of the Fifth International Conference
on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’99), volume 1730 of Lecture Notes in Artificial Intelli-
gence, pages 92–106. Springer-Verlag, 1999.

[79] V. Lifschitz, F. van Hermelen, and B. Porter, editors. Handbook
of Knowledge Representation. Elsevier, 2008.

[80] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic
program by SAT solvers. Artificial Intelligence, 157(1-2):115–
137, 2004.

[81] J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven
clause learning SAT solvers. In Handbook of Satisfiability [9],
chapter 4, pages 131–153.

[82] V. Mellarkod and M. Gelfond. Integrating answer set rea-
soning with constraint solving techniques. In J. Garrigue
and M. Hermenegildo, editors, Proceedings of the Ninth In-
ternational Symposium on Functional and Logic Programming
(FLOPS’08), volume 4989 of Lecture Notes in Computer Sci-
ence, pages 15–31. Springer-Verlag, 2008.

[83] V. Mellarkod, M. Gelfond, and Y. Zhang. Integrating answer
set programming and constraint logic programming. Annals
of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[84] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of
the Thirty-eighth Conference on Design Automation (DAC’01),
pages 530–535. ACM Press, 2001.

[85] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT
and SAT modulo theories: From an abstract Davis-Putnam-
Logemann-Loveland procedure to DPLL(T). Journal of the
ACM, 53(6):937–977, 2006.

[86] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and
M. Barry. An A-prolog decision support system for the space
shuttle. In I. Ramakrishnan, editor, Proceedings of the Third

International Symposium on Practical Aspects of Declarative
Languages (PADL’01), volume 1990 of Lecture Notes in Com-
puter Science, pages 169–183. Springer-Verlag, 2001.

[87] K. Pipatsrisawat and A. Darwiche. A lightweight component
caching scheme for satisfiability solvers. In J. Marques-Silva
and K. Sakallah, editors, Proceedings of the Tenth International
Conference on Theory and Applications of Satisfiability Testing
(SAT’07), volume 4501 of Lecture Notes in Computer Science,
pages 294–299. Springer-Verlag, 2007.

[88] E. Pontelli, M. Balduccini, and F. Bermudez. Non-monotonic
reasoning on Beowulf platforms. In V. Dahl and P. Wadler,
editors, Proceedings of the Fifth International Symposium on
Practical Aspects of Declarative Languages (PADL’03), vol-
ume 2562 of Lecture Notes in Artificial Intelligence, pages 37–
57. Springer-Verlag, 2003.

[89] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Con-
straint Programming. Elsevier, 2006.

[90] L. Ryan. Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, 2004.

[91] V. Ryvchin and O. Strichman. Local restarts. In H. Kleine Bün-
ing and X. Zhao, editors, Proceedings of the Eleventh Interna-
tional Conference on Theory and Applications of Satisfiability
Testing (SAT’08), volume 4996 of Lecture Notes in Computer
Science, pages 271–276. Springer-Verlag, 2008.

[92] M. Schaefer and C. Umans. Completeness in the polynomial-
time hierarchy: A compendium. ACM SIGACT News,
33(3):32–49, 2002. Updated version available at http://
ovid.cs.depaul.edu/documents/phcom.ps.

[93] J. Schlipf. The expressive powers of the logic programming
semantics. Journal of Computer and System Sciences, 51:64–
86, 1995.

[94] L. Schneidenbach, B. Schnor, M. Gebser, R. Kaminski,
B. Kaufmann, and T. Schaub. Experiences running a parallel
answer set solver on Blue Gene. In M. Ropo, J. Westerholm,
and J. Dongarra, editors, Proceedings of the Sixteenth Euro-
pean PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface
(PVM/MPI’09), volume 5759 of Lecture Notes in Computer
Science, pages 64–72. Springer-Verlag, 2009.

[95] P. Simons, I. Niemelä, and T. Soininen. Extending and im-
plementing the stable model semantics. Artificial Intelligence,
138(1-2):181–234, 2002.

[96] T. Soininen and I. Niemelä. Developing a declarative rule lan-
guage for applications in product configuration. In G. Gupta,
editor, Proceedings of the First International Workshop on
Practical Aspects of Declarative Languages (PADL’99), vol-
ume 1551 of Lecture Notes in Computer Science, pages 305–
319. Springer-Verlag, 1999.

[97] T. Son, C. Baral, T. Nam, and S. McIlraith. Domain-dependent
knowledge in answer set planning. ACM Transactions on Com-
putational Logic, 7(4):613–657, 2006.

[98] T. Syrjänen. Lparse 1.0 user’s manual. http://www.tcs.
hut.fi/Software/smodels/lparse.ps.gz.

[99] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla:
Portfolio-based algorithm selection for SAT. Journal of Artifi-
cial Intelligence Research, 32:565–606, 2008.

[100] H. Zhang, M. Bonacina, and J. Hsiang. PSATO: a distributed
propositional prover and its application to quasigroup prob-
lems. Journal of Symbolic Computation, 21(4):543–560, 1996.

