
Algorithm Configuration
for Portfolio-based Parallel SAT-Solving

Holger Hoos 1 and Kevin Leyton-Brown 1 and Torsten Schaub 2 and Marius Schneider 2

Abstract. Since 2004, the increases in processing power enabled by
Moore’s law have been primarily achieved by means of multi-core
processor architectures. To make effective use of modern hardware
when solving hard computational problems, it is therefore necessary
to employ parallel solution strategies. In this work, we demonstrate
how effective parallel solvers for SAT, one of the most widely studied
NP-complete problems, can be produced automatically from any
existing sequential, highly parametric SAT solver. Our approach uses
an automatic algorithm configurator to produce a set of configurations
to be executed in parallel. Applied to the state-of-the-art SAT solver
Lingeling, our fully automated procedure produced 4-core solvers
with speedups of up to 2.79-fold on a diverse set of instances from the
application category of the 2003–2011 SAT Competitions. Our best
automatically generated parallel portfolio of Lingeling configurations
outperforms Plingeling, the gold medal winner of the application
track (wallclock time) of the 2011 SAT Competition, and ManySAT,
the winner of the special prize for parallel solvers for application
instances of the 2009 SAT Competition. We furthermore demonstrate
that, when applied to the state-of-the-art multi-threaded SAT and ASP
solver clasp, our automated approach yields parallelization speedups
matching those achieved through the considerable efforts of a human
expert with extensive knowledge of the solver.

1 Introduction

Over most of the last decade, additional computational power has
come primarily in the form of increased parallelism. As a consequence,
effective parallel solvers are increasingly key to solving computation-
ally challenging problems. Unfortunately, the manual construction
of parallel solvers is nontrivial, often requiring fundamental redesign
of existing, sequential approaches. It is thus very appealing to iden-
tify generic methods for the construction of parallel solvers from
inherently sequential sources. Indeed, the prospect of a substantial
reduction in human development cost means that such approaches
can be impactful, even if their results are performance does not reach
that of special-purpose parallel designs—just as high-level program-
ming languages are useful, even though compiled software tends to
fall short of the performance that can be obtained from expert-level
programming in assembly language. One promising approach for
parallelizing sequential algorithms is the design of parallel algorithm
portfolios [15, 8].

In this work, we study generic methods for generating parallel port-
folios from a single, highly parametric sequential solver design for

1 Department of Computer Science, University of British Columbia, Vancou-
ver, BC (Canada), {hoos,kevinlb}@cs.ubc.ca

2 Institute of Computer Science, University of Potsdam, Germany,
{torsten,manju}@cs.uni-potsdam.de

a given problem. As such, it can be understood as an instance of the
programming by optimization paradigm [13], providing concrete soft-
ware tools that leverage algorithm configurators and a user-specified
design space to substitute for human development effort. In particular,
unlike other approaches (further discussed in Section 2), our methods
do not depend on the availability of multiple complementary solver
designs. We evaluate our methods in the SAT domain, which we
chose because it is widely studied and very relevant to academia and
industry. We thus have access to well-known state-of-the-art highly
parametric solvers, and are assured that the bar for demonstrating
efficacy of parallelization strategies is appropriately high.

We consider two scenarios. In the first, there is no communica-
tion between component solvers, and the parallel portfolio can be
generated fully automatically from a single, sequential parametric
solver. In this case, the design space for a parallel portfolio of size
k corresponds to the kth Cartesian power of the design space of the
given sequential solver. To evaluate our methods in this setting, we
chose Lingeling, a prominent, highly parametric state-of-the-art SAT
solver underlying the parallel solver that won a gold medal in the
application (wall-clock) track of the 2011 SAT Competition.

Our second scenario allows for communication between compo-
nent solvers in a parallel portfolio. Here, component solvers are copies
of a single, parametric sequential solver that communicate through
a simple mechanism; for example, in SAT, they might share learned
clauses (see, e.g., [10].) The communication mechanism is problem-
specific and designed by a human expert, resulting in the same design
space as in our first scenario, augmented to further include design
choices that span the component solvers (the communication mecha-
nism itself, preprocessing strategies, etc). To evaluate our methods in
this setting, we chose to study the state-of-the-art, highly parametric,
multi-threaded SAT and ASP solver clasp.

The key idea underlying our approach for handling both scenarios
lies in the use of automated algorithm configurators, which are now
quite mature and have been demonstrated to achieve impressive per-
formance improvements for different solvers on many problems (see,
e.g., [18, 1, 28, 21, 16, 17]). The configuration spaces arising in the
context considered here are very large and therefore present a consid-
erable challenge even to the best configurators. Therefore, in addition
to a rather straightforward approach in which all components of a
given parallel portfolio are configured simultaneously, we introduce a
greedy approach that adds one component solver at a time. Our results
demonstrate that this second approach works particularly well and
produces parallel portfolios whose performance on standard 4-core
CPUs compares favourably with that of well-known, hand-crafted
parallel SAT solvers.

2 Related Work

Well before the advent of the current trend towards multi-core com-
puting, the potential benefits of parallel algorithm portfolios were
identified in seminal work by Huberman et al. [15]. Gomes & Sel-
man [8] further investigated conditions under which such portfolios
outperform their constituent solvers. Both lines of work considered
prominent constraint programming problems (graph colouring and
quasigroup completion), but neither presented methods for automat-
ically constructing portfolio solvers. More recently, such methods
have been introduced for parallel portfolios in which the allocation
of computational resources to algorithms in the portfolio is static
[23, 29], as well as in cases where it can change over time [6]. All
of these methods build a portfolio from a relatively small candidate
set of distinct algorithms. While in principle, these methods could
also be applied given a set of algorithms expressed implicitly as the
configurations of one parametric solver, in practice, they are useful
only when the set of candidates is relatively small. The same limita-
tion applies to existing approaches that combine algorithm selection
and scheduling, notably CPHydra [22], which also relies on cheaply
computable features of the problem instances to be solved and selects
multiple solvers to be run in parallel.

In contrast, our work is concerned with building parallel portfolios
from very large sets of candidate algorithms which are expressed as
parameter settings of high-performance solvers such as Lingeling and
clasp. Our approach critically relies on the availability of an effec-
tive algorithm configurator, such as ParamILS [19, 18], GGA [1], or
SMAC [17, 20]. It is conceptually related to the Hydra and ISAC pro-
cedures for constructing portfolio-based algorithm selectors [28, 21].
Like these methods, our approach uses an algorithm configurator to
determine a set of configurations that complement each other well.
Furthermore, like Hydra, our GREEDY portfolio construction proce-
dure relies on the idea of determining such configurations one at a
time, to achieve a maximum incremental performance improvement in
each iteration. However, both Hydra and ISAC construct per-instance
algorithm selectors: they do not run multiple solvers in parallel, but
instead select a single solver based on instance features. To our knowl-
edge, our work is the first to show how to automatically construct
effective parallel portfolios from single, highly parametric solvers.

Another conceptually related approach is aspeed [14], which com-
putes (parallel) algorithm schedules by taking advantage of the mod-
eling and solving capacities of Answer Set Programming. Unlike our
approach, aspeed is based on a diverse set of solvers and does not use
an algorithm configurator to optimize its configurations.

Parallel SAT solvers have received increasing attention in recent
years. ManySAT [10, 11, 9] was one of the first parallel SAT solvers.
It is a static portfolio solver that uses clause sharing between its com-
ponents, each of which is a manually configured, DPLL-type SAT
solver based on MiniSat [5]. Plingeling [3, 4] is based on a similar
design; its recent version 587, which won a gold medal in the appli-
cation track of the 2011 SAT Competition (wrt. wall clock time on
SAT+UNSAT instances), shares unit clauses as well as equivalences
between its component solvers. Similarly, CryptoMiniSat [26], which
won silver in the application track of the 2011 SAT Competition,
shares unit and binary clauses. clasp [7] is a state-of-the-art solver for
SAT and ASP [2] that supports parallel multithreading (since version
2.0.0) for search space splitting and/or competing strategies, both
combinable with a portfolio approach. clasp shares unary, binary and
ternary clauses, and (optionally) offers a parameterized mechanism
for distributing and integrating (longer) clauses. Finally, ppfolio [24]
is a simple, static parallel portfolio solver for SAT without clause

Algorithm 1: Portfolio Configuration Procedure GLOBAL

Input :parametric solver A with configuration space C;
configuration space Cg for communication mechanism
between component solvers; desired number k of
component solvers; instance set I; performance metric
m; configurator AC; number n of independent
configurator runs; total configuration time t

Output :parallel portfolio solver Ak

1 for j := 1..n do
2 obtain configuration cj by running AC on Ak with

configuration space Ck × Cg on I using m for time t/n

3 choose ĉ ∈ {c1, . . . , cn} for which Ak gives optimal
performance on I according to m return ĉ

sharing that uses CryptoMiniSat, Lingeling, clasp, TNM [27] and
march hi [12] in their default configurations as component solvers
and won numerous medals in the 2011 SAT Competition. Like the pre-
viously mentioned portfolio solvers for SAT, ppfolio was constructed
manually, but uses a very diverse set of high-performance solvers as
its components. Overall, our approach can be understood as an auto-
matic method for replicating the (hand-tuned) success of solvers like
ManySAT , Plingeling, CryptoMiniSat or clasp, which are inherently
based on different configurations of a single parametric solver.

3 Parallel Portfolio Configuration

We now describe two new methods for generating a parallel solver
portfolio from a single parametric solver, A, with configuration space
C. We call the given set of problem instances I; our goal is to obtain
optimized performance according to a given metric m. (In our exper-
iments, we minimize PAR10 [18].) We use Ak = [A1, . . . , Ak] to
denote a parallel portfolio with k component solvers, each of which is
a configuration of A. The configuration space of Ak is Ck =

∏k
i=1 C

in the case where there is no communication between the component
solvers (apart from coordinated launch and termination), and Ck×Cg

in the case where A1, . . . , Ak share information throughout a run,
where Cg is the set of all possible settings of the parameters of the
communication mechanism and any other global logic. Let AC de-
note a generic algorithm configuration procedure (in our experiments,
we used ParamILS [19, 18]). Following our standard practice (see
e.g., [20]) we perform multiple independent runs of AC, keeping the
configuration with the best performance on I . We model the case of
non-communicating component solvers as Cg := {∅}.

Simultaneous configuration of all component solvers (GLOBAL).
Our first portfolio configuration method is the straightforward ex-
tension of standard algorithm configuration to the construction of a
parallel portfolio (see Algorithm 1). Specifically, if A has ` parame-
ters, we treat the portfolio Ak as a single algorithm with `k parameters
and configure it directly. As noted above, we perform n parallel runs
of AC. These runs can be performed in parallel, meaning that this
procedure requires wall clock time of t/n if n cores are available.
Nevertheless, the practicality of this approach is limited by the fact
that the global configuration space Ck × Cg to which AC is applied
grows exponentially with k. However, given a powerful configurator,
a moderate value of k and a reasonably sized C (and Cg), this simple
approach could be quite effective, especially when compared to the
manual construction of a parallel portfolio.

Algorithm 2: Portfolio Configuration Procedure GREEDY

Input :parametric solver A with configuration space C;
configuration space Cg for communication mechanism
between component solvers; desired number k of
component solvers; instance set I; performance metric
m; configurator AC; number n of independent
configurator runs; total configuration time t

Output :parallel portfolio solver Ak

1 A0 := [empty portfolio]
2 for i := 1..k do
3 for j := 1..n do
4 obtain configuration cij by running AC on

Ai := Ai−1||A with configuration space∏i−1
l=1{ĉ

l} × C × Cg on I using m for time t/(k · n),
where Ai−1||A denotes the portfolio obtained by
extending Ai−1 with algorithm A

5 let ĉi ∈ {ci1, . . . , cin} be the configuration for which Ai

achieved best performance on I according to m, and let ĉi be
the configuration of the component solver most recently
added to Ai

6 return ĉk

Iterative configuration of component solvers (GREEDY). For use
in what we expect to be the typical case where Ck × Cg is too
large to be effectively searched by AC, we introduce an iterative
procedure that adds and configures component solvers one at a time
(see Algorithm 2). The key idea is to use AC only to configure the
component solver added in the given iteration (and the communication
mechanism, as applicable, once there are two or more components),
leaving all other components clamped to the configurations that were
determined for them in previous iterations. The procedure is greedy in
the sense that in each iteration i, it attempts to add a component solver
to the given portfolio Ai−1 in a way that myopically maximizes
the performance of the new portfolio Ai (Line 4). Obviously, for
k > 1, even if we assume that AC finds optimal configurations
in each iteration, this greedy procedure is not guaranteed to find
a globally optimal configuration of the entire portfolio. However,
the configuration tasks in each iteration are much easier than those
performed by GLOBAL for even moderately sized portfolio, giving us
reason to hope that under realistic conditions, GREEDY might perform
better than GLOBAL, especially for large configuration spaces C and
Cg , and for comparatively modest time budgets t. Finally, notice
that this procedure only runs portfolios of size i in each iteration i;
therefore, if there is a cost to computing cycles for each parallel CPU
or CPU core, there are savings in earlier iterations i < k. (However,
note that unlike Hydra, which GREEDY resembles, we do run entire
portfolios in each iteration rather than individual solvers.) Observe
that while the sets of n independent configurator runs in Line 4 can
be performed in parallel (as in GLOBAL), the choice of the best-
performing configuration ĉi has to be made after each iteration i,
introducing a modest overhead compared to the cost of the actual
configuration runs.

4 Experiments

To empirically evaluate our approach for creating and optimizing
parallel algorithm portfolios, we applied our GLOBAL and GREEDY

methods to two state-of-the-art SAT solvers: Lingeling and clasp.
Specifically, we compared performance-optimized sequential and

parallel versions of both solvers to our GREEDY method, running
on four cores. Finally, we assessed the performance of the parallel
solvers obtained using our approach relative to other parallel SAT
solvers. A more detailed description of our experimental findings is
available at http://www.cs.uni-potsdam.de/parfolio.

Scenarios. We compared six experimental scenarios for each solver.
We use the terminology Default-SP to denote a single-processor
solver’s default configuration, and analogously Default-MP4 for an
out-of-the-box four-processor version. We contrasted these solver
versions with three versions obtained using automated configuration:
Configured-SPdenotes the best (single-processor) configuration ob-
tained from 40 independent configurator runs on a training set, while
Global-MP4 and Greedy-MP4 represent the portfolios obtained using
our methods from Section 3 for n = 10 and k = 4.

Solvers. We applied our approach to the two highly parameter-
ized, state-of-the-art SAT solvers Lingeling version 276 [3] and clasp
version 2.0.2 [7]. Lingeling has 58 parameters, which (after discretiza-
tion) gave rise to a configuration space of size about 1045. Our parallel
portfolio version of Lingeling was implemented based on a simple
script that runs a given number of Lingeling instances independently
in parallel and without communication (Cg := {∅}). We did not
apply our methods to Plingeling, the ‘official’ parallel version of Plin-
geling, because it lacks configurable parameters. However, we did
compare our methods to Plingeling. (Single-processor) clasp has 25
parameters, which—discretized by the developer—induce a space of
about 1013 configurations. clasp comes with a native multi-threaded
architecture, in which each parallel thread can be configured nearly as
flexibly as the sequential solver. Preprocessing is controlled and con-
figured (Cg) globally for all threads. We did not consider active clause
sharing in our experiments, but multi-threaded clasp passively shares
unary, binary, and ternary clauses. Overall, four-threaded clasp can be
configured in about 1053 distinct ways. clasp’s default configurations
were determined by its main developer with considerable manual
effort; the default parallel portfolio version of clasp, Default-MP4,
was entered in the 2011 SAT Competition.

Instance Sets. We conducted our experiments on instances from
the application (industrial) categories of the 2003–2011 SAT Com-
petitions. Our configuration experiments distinguish a training and a
test set. We used the same training set as Schneider and Hoos [25],
consisting of 276 instances from the 2003–2009 SAT Competitions.
Our test set was comprised of all application (industrial) instances
used in the 2003 and 2011 SAT Competitions, with the exception of in-
stances already included in our training set: 679 instances overall. We
chose a captime of 600 seconds for solver runs on training instances
performed during configuration, and a captime of 5000 seconds (as
in the 2011 SAT Competition) when evaluating solvers on the test set.

Evaluation Criteria. All solvers were configured and evaluated
based on PAR10 scores [18], which treat timed-out runs as having
taken 10 times the captime. We compared solvers using three mea-
sures. First, overall speedup measures the speedup in terms of total
PAR10 scores, disregarding instances from each table in what fol-
lows that were not solved by any solver. Second, (arithmetic) aver-
age speedup takes the average over the set of the compared solvers’
speedups, considering only instances that could be solved by both
compared solvers. (We note that this measure was previously used
both in the 2008 SAT Race and by Hamadi et al. [11]; however, if there

PAR10 Overall Speedup Overall Speedup Avg. Speedup Geo. Avg. Speedup
vs Default-SP vs Configured-SP vs Configured-SP vs Configured-SP

Default-SP 3747 1.00 0.93 1.44 0.98
Configured-SP 3499 1.07 1.00 1.00 1.00
Plingeling 3066 1.22 1.14 7.39 1.46
Global-MP4 2734 1.37 1.27 10.47 1.36
Greedy-MP4 1341 2.79 2.61 3.52 1.60

Table 1: PAR10 scores and speedups on application/industrial SAT instances achieved by single-processor (SP) and 4-processor (MP4) versions
of Lingeling.

PAR10 Overall Speedup Overall Speedup Avg. Speedup Geo. Avg. Speedup
vs Default-SP vs Configured-SP vs Configured-SP vs Configured-SP

Default-SP 7560 1.00 0.82 4.46 1.04
Configured-SP 6170 1.23 1.00 1.00 1.00
Default-MP4 2324 3.25 2.65 7.58 2.15
Global-MP4 3604 2.10 1.71 6.36 1.44
Greedy-MP4 2277 3.32 2.71 9.47 2.14

Table 2: PAR10 scores and speedups on application/industrial SAT instances achieved by single-processor (SP) and 4-processor (MP4) versions
of clasp.

are instances solved by only one solver, disregarding these when mea-
suring speedup can bias results against that solver.) Finally, geometric
average speedup takes the nth root of the product of the elements
of the set of the compared solvers’ speedups over the default, again
considering only instances that could be solved by both compared
solvers.

We now compare the three measures. The overall speedup assesses
the speedup obtained in a situation where a stream of problem in-
stances has to be solved, and our test set is representative of that
stream. This is the measure we favour, because performance on hard
instances is often the most important, because this measure is much
less sensitive to outliers, and because it does not require dropping
instances that are solved only by the single, best-performing solver.
Thus, while we include the other measures in our tables, we do not
discuss them in the text in what follows. Average and geometric aver-
age speedups are nevertheless also useful for considering situations
where there is substantial uncertainty over the difficulty of instances
that will ultimately be faced, and therefore consistent speedups across
the entire training set (rather than just hard instances in that set) is
important. We note that, unlike geometric average speedup, average
speedup can give rise to situations where algorithms A and B have
speedups > 1 of A against B and B against A simultaneously. (To
see this, consider running times 1, 2 for A and 2, 1 for B on two given
instances.)

We performed all solver and configurator runs on Dell PowerEdge
R610 systems with an Intel Xeon E5520 CPU with four cores
(2.26GHz), 48GB RAM running 64-bit Scientific Linux.

Configuration Experiments. We used the FocusedILS variant of
ParamILS (version 2.3.5) [18], one of the best algorithm configurators
currently available. To enable fair performance comparisons, in the
case of Configured-SP and Global-MP4 we allowed 8 CPU days of
configuration time and 1 CPU day for validation runs per configurator
run, which amounted to a total of 360 CPU days. (Validation runs
were used to choose the best among a set of configurations; they relied
on the same training set as the configuration runs. The test set was
used only for evaluating the different methods.) For Greedy-MP4, we

allowed for 2 CPU days of configuration time and 1 CPU days of
validation time per configurator run, which amounted to a total of
about 300 CPU days for k = 4. When using a cluster of dedicated
machines with 4-core CPUs, each of those solver versions could be
produced within 9 days of wall-clock time.

PAR1 PAR10 Timeouts
Virtual Best Solver 1334 10480 138
ppfolio 1646 13310 176
Greedy-MP4 (Lingeling) 1717 13712 181
Plingeling (587) 1684 13812 183
Greedy-MP4 (clasp) 1856 15310 203
clasp (MT) 1837 15357 204
Plingeling (276) 1850 15437 205
ManySAT(1.1) 1887 16003 213
ManySAT(2.0) 1998 17373 232

Table 3: Comparison of our best parallelization approach, GREEDY,
with other parallel SAT solvers from the 2011 SAT Competition in the
four-processor setting. (The performance of the Virtual Best Solver is
the minimal runtime of each instance given a portfolio of solvers.)

Parallelization speedups. Table 1 presents the results of our ex-
periments with Lingeling in the communication-free scenario. We
observe that single-processor configuration offered very little benefit
here, with only small improvements in PAR10 score. Somewhat better
results were obtained for Plingeling, but despite access to four cores
only achieved an overall speedup of 1.22 as compared to the Lin-
geling default. Our Global-MP4 method outperformed Plingeling, but
only slightly, achieving an overall speedup of 1.37 times the default.
Our Greedy-MP4 method made the best use of its four cores, achiev-
ing a 2.79-fold speedup (see also Figure 1a). Using a permutation
test (10 000 iterations, p = 0.05), we confirmed that Greedy-MP4’s
performance significantly exceeded that of the other methods.

Table 2 summarizes the results of our experiments with clasp. Here
again we observe small gains from configuring the single-processor
solver, and Greedy-MP4 outperforming Global-MP4. Overall, Greedy-

 1

 10

 100

 1000

 1 10 100 1000

t i
n

se
c

(G
re

ed
y-

M
P

4)

t in sec (Configured-SP)

 1

 10

 100

 1000

 1 10 100 1000

t i
n

se
c

(G
re

ed
y-

M
P

4)

t in sec (Configured-SP)

Figure 1: Performance of Greedy-MP4 vs Configured-SP for Lingeling (left) and clasp (right); each cross represents one SAT instance from our
evaluation set.

MP4 performed even better in this domain, achieving a total speedup
of 3.32 over the single-processor default (see also Figure 1b). Greedy-
MP4 achieved slightly (but not significantly) better performance as
compared to clasp’s multi-processor default. However, this default
was developed through extensive human effort and (as a SAT Com-
petition entrant) had previously targeted the same data we used to
evaluate it. Thus, we see our automated methods’ ability to match
Default-MP4’s performance as an encouraging finding.

Comparison to other parallel solvers. Finally, Table 3 presents a
comparison of our methods’ performance relative to other 4-processor
parallel solvers. We note a few interesting points here. First, Plin-
geling, the 2011 SAT Competition gold medal winner in the applica-
tion multi-core track, appears only in 3rd place; however, we also note
that the competition used 8 processor cores. Second, our Greedy-MP4
(Lingeling), which is based on version 276 of Lingeling from 2010,
performed as well as the new Plingeling, version 587. Third, although
the ASP-solver clasp was designed for SAT instances more similar to
those from the competition’s crafted (rather than application) track,
clasp (in both its default and our Greedy-MP4 variants) solved more
instances than both ManySAT versions and slightly more than Plin-
geling, version 276. Fourth, we note that ManySAT’s performance
was weaker than one might expect given the speedups described
in [11]; however, these results were based on (arithmetic average)
speedups over the single-processor variant of ManySAT rather than
MiniSat 2.1 (confirmed through personal communication with the
authors). Finally, ppfolio’s strong performance indicates that portfo-
lios of complementary solvers can yield even stronger performance
than parallel portfolios constructed from single parameterized solvers.
This is further confirmed by the excellent performance of the perfect
per-instance solver selector over the solvers we considered (”virtual
best solver”). We aim to consider automatically constructed parallel
portfolios that span multiple parametric solvers in future work.

Acknowledgments

T. Schaub and M. Schneider were supported by the DFG projects
under SCHA 550/8-1/2 and SCHA 550/9-1.

REFERENCES

[1] C. Ansótegui, M. Sellmann, and K. Tierney, ‘A gender-based genetic
algorithm for the automatic configuration of algorithms’, in Proceedings
of the Fifteenth International Conference on Principles and Practice
of Constraint Programming (CP’09), volume 5732 of Lecture Notes in
Computer Science, pp. 142–157. Springer-Verlag, (2009).

[2] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving, Cambridge University Press, 2003.

[3] A. Biere, ‘Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010’, FMV Reports Series 10/1, Institute for Formal Models and Veri-
fication. Johannes Kepler University, (2010).

[4] A. Biere, ‘Lingeling and friends at the SAT competition 2011’, Tech-
nical Report FMV 11/1, Institute for Formal Models and Verification,
Johannes Kepler University, (2011).

[5] N. Eén and N. Sörensson, ‘An extensible SAT-solver’, in Proceedings of
the Sixth International Conference on Theory and Applications of Satis-
fiability Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pp. 502–518. Springer-Verlag, (2004).

[6] M. Gagliolo and J. Schmidhuber, ‘Learning dynamic algorithm port-
folios’, Annals of Mathematics and Artificial Intelligence, 47(3-4), pp.
295–328, (2006).

[7] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, ‘Conflict-driven
answer set solving’, in Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), pp. 386–392. AAAI
Press/The MIT Press, (2007).

[8] C. Gomes and B. Selman, ‘Algorithm portfolios’, Artificial Intelligence,
126(1-2), pp. 43–62, (2001).

[9] L. Guo, Y. Hamadi, S. Jabbour, and L. Sais, ‘Diversification and in-
tensification in parallel SAT solving’, in Proceedings of the Sixteenth
International Conference on Principles and Practice of Constraint Pro-
gramming (CP’10), volume 6308 of Lecture Notes in Computer Science,
pp. 252–265. Springer-Verlag, (2010).

[10] Y. Hamadi, S. Jabbour, and L. Sais, ‘Control-based clause sharing in
parallel SAT solving’, in Proceedings of the Twenty-first International
Joint Conference on Artificial Intelligence (IJCAI’09), pp. 499–504.
AAAI Press/The MIT Press, (2009).

[11] Y. Hamadi, S. Jabbour, and L. Sais, ‘ManySAT: a parallel SAT solver’,
Journal on Satisfiability, Boolean Modeling and Computation, 6, pp.
245–262, (2009).

[12] M. Heule, M. Dufour, J. van Zwieten, and H. van Maaren, ‘March eq:
Implementing additional reasoning into an efficient look-ahead SAT
solver’, in Proceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), volume 3542
of Lecture Notes in Computer Science, pp. 345–359. Springer-Verlag,
(2004).

[13] H. Hoos, ‘Programming by optimisation’, Communications of the ACM,
55, pp. 70–80, (2012).

[14] H. Hoos, R. Kaminski, T. Schaub, and M. Schneider, ‘aspeed: ASP-based
solver scheduling’, in Technical Communications of the Twenty-eight

International Conference on Logic Programming (ICLP’12). Leibniz
International Proceedings in Informatics (LIPIcs), (2012). To appear.

[15] B. Huberman, R. Lukose, and T. Hogg, ‘An economic approach to hard
computational problems’, Science, 275, pp. 51–54, (1997).

[16] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Automated configuration
of mixed integer programming solvers’, in Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR’10), volume 6140 of Lecture Notes in Computer
Science, pp. 186–202. Springer, (2010).

[17] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Sequential model-based
optimization for general algorithm configuration’, in Proceedings of the
Fifth International Conference on Learning and Intelligent Optimization
(LION’11), volume 6683 of Lecture Notes in Computer Science, pp.
507–523. Springer-Verlag, (2011).

[18] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle, ‘ParamILS: An
automatic algorithm configuration framework’, Journal of Artificial
Intelligence Research, 36, pp. 267–306, (2009).

[19] F. Hutter, H. Hoos, and T. Stützle, ‘Automatic algorithm configuration
based on local search’, in Proceedings of the Twenty-second National
Conference on Artificial Intelligence (AAAI’07), pp. 1152–1157, AAAI
Press, (2007).

[20] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Parallel algorithm configura-
tion’, in Proceedings of the Sixth International Conference on Learning
and Intelligent Optimization (LION’12), Lecture Notes in Computer
Science. Springer-Verlag, (2012). To appear.

[21] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, ‘ISAC – instance-
specific algorithm configuration’, in Proceedings of the Nineteenth Eu-
ropean Conference on Artificial Intelligence (ECAI’10), pp. 751–756.
IOS Press, (2010).

[22] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan,
‘Using case-based reasoning in an algorithm portfolio for constraint
solving’, in Proceedings of the Nineteenth Irish Conference on Artificial
Intelligence and Cognitive Science (AICS’08), (2008).

[23] M. Petrik and S. Zilberstein, ‘Learning static parallel portfolios of al-
gorithms’, in Proceedings of the International Symposium on Artificial
Intelligence and Mathematics (ISAIM 2006), (2006).

[24] O. Roussel. Description of ppfolio, 2011. Available at http://www.
cril.univ-artois.fr/˜roussel/ppfolio/solver1.pdf, Last vis-
ited on 07-19-2012.

[25] M. Schneider and H. Hoos, ‘Quantifying homogeneity of instance sets
for algorithm configuration’, in Proceedings of the Sixth International
Conference Learning and Intelligent Optimization (LION’12), Lecture
Notes in Computer Science. Springer-Verlag, (2012). To appear.

[26] M. Soos, K. Nohl, and C. Castelluccia, ‘Extending SAT solvers to cryp-
tographic problems’, in Proceedings of the Twelfth International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT’09), vol-
ume 5584 of Lecture Notes in Computer Science, pp. 244–257. Springer-
Verlag, (2009).

[27] W. Wei and C. Li. Switching between two adaptive noise mech-
anism in local search for SAT, 2009. Available at http://home.

mis.u-picardie.fr/˜cli/EnglishPage.html, Last visited on 07-
19-2012.

[28] L. Xu, H. Hoos, and K. Leyton-Brown, ‘Hydra: Automatically config-
uring algorithms for portfolio-based selection’, in Proceedings of the
Twenty-fourth National Conference on Artificial Intelligence (AAAI’10),
pp. 210–216. AAAI Press, (2010).

[29] X. Yun and S. Epstein, ‘Learning algorithm portfolios for parallel execu-
tion’, in Proceedings of the Sixth International Conference Learning and
Intelligent Optimization (LION’12), Lecture Notes in Computer Science.
Springer-Verlag, (2012). To appear.

