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Abstract. Automated configuration procedures play an increasingly prominent
role in realising the performance potential inherent in highly parametric solvers
for a wide range of computationally challenging problems. However, these con-
figuration procedures have difficulties when dealing with inhomogenous instance
sets, where the relative difficulty of problem instances varies between configura-
tions of the given parametric algorithm. In the literature, instance set homogene-
ity has been assessed using a qualitative, visual criterion based on heat maps.
Here, we introduce two quantitative measures of homogeneity and empirically
demonstrate these to be consistent with the earlier qualitative criterion. We also
show that according to our measures, homogeneity increases when partitioning
instance sets by means of clustering based on observed runtimes, and that the
performance of a prominent automatic algorithm configurator increases on the
resulting, more homogenous subsets.
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1 Introduction

The automated configuration of highly parametric solvers has recently lead to substan-
tial improvements in the state of the art in solving a broad range of challenging com-
putational problems, including propositional satisfiability (SAT) [1,2,3], mixed integer
programming (MIP) [4] and AI planning [5]. Broader adoption of this approach is likely
to lead to a fundamental change in the way effective algorithms for NP-hard problems
are designed [6], and the design and application of automated algorithm configuration
techniques is a very active area of research (see, e.g., [7,8,9]).

One fundamental challenge in automated algorithm configuration arises from the
fact that the relative difficulty of problem instances from a given set or distribution may
vary between different configurations of the algorithm to be configured. This poses
the risk that an iterative configuration process is misguided by the problem instances
considered at early stages. For this reason, the performance of ParamILS [10,9], one
of the strongest and most widely configuration procedures currently available, signif-
icantly depends on the ordering of the problem instances used for training [1,9], and
the same can be expected to hold for other algorithm configuration techniques. There-
fore, the question to which degree the relative difficulty of problem instances varies
between configurations of a parametric algorithm is of considerably interest. Indeed,



precisely this question has been addressed in recent work by Hutter et al. [11], who
refer to instance sets for which the same instances are easy and hard for different con-
figuration as homogeneous and ones for which this is markedly not the case as inho-
mogeneous. They state that inhomogeneous instance sets are “problematic to address
with both manual and automated methods for offline algorithm configuration” [11] and
list three approaches for addressing this issue: clustering of homogeneous instance sets
[12,13], portfolio-based algorithm selection [14,15] and per-instance algorithm config-
uration [16,17]. They furthermore use a heat map visualization to qualitatively assess
homogeneity.

In the work presented in the following, we introduce two quantitative measures of
instance set homogeneity and explore to which extent these may provide a basis for
assessing the efficacy of state-of-the-art algorithm configuration approaches. Like the
heat maps of Hutter et al., our homogeneity measures are solely based on the perfor-
mance of a given set of configurations and do not make use of problem-specific instance
features. We show that on well-known algorithm configuration scenarios from the liter-
ature, our new measures are consistent with previous qualitative assessments. We fur-
ther demonstrate that clustering instance sets can produce more homogenous subsets,
and we provide preliminary evidence that automated algorithm configuration applied
to those subsets tends to produce better results, which indicates that our homogeneity
measures behave as intended.

The remainder of this paper is structured as follows: After a brief survey of related
work (Section 2), we present our homogeneity measures (Section 3). This is followed
by a brief description of clustering methods, which we subsequently use to partition in-
stance set into more homogenous subsets (Section 4). We then present an experimental
evaluation of our new measures, in terms of their consistency with the earlier qualita-
tive assessment by Hutter et al., and in terms of the extent to which they are affected by
clustering based on run-time measurements and on problem-dependent features (Sec-
tion 5). Finally, we provide some general insights as well as a brief outlook on future
work (Section 6).

2 Related Work

We are not aware of any existing work focused on homogeneity of instance sets given
a solver as a central theme. However, there is a close conceptual relationship with prior
work on portfolio-based algorithm selection and feature-based clustering of instances.

2.1 Portfolio-based algorithm selection

The key idea behind portfolio-based algorithm selection is, given a set S of solvers for
a given problem, to map any given problem instance to a solver from S that can be ex-
pected to solve it most effectively (see [18]). Perhaps the best-known realization of this
idea is the SATzillaapproach [15], which has produced SAT solvers that won numerous
medals in the 2007 and 2009 SAT competitions. SATzilla uses so-called empirical hard-
ness models [19,20] for predicting performance based on cheaply computable instance



features, and selects the solver to be applied to a given instance based on these perfor-
mance predictions. Similar techniques have been successfully applied to several other
problems (see, e.g., [4,21,22,23]).

In general, the problem of learning a mapping from solvers to instances can be
seen as a multiclass classification problem and attacked using various machine learning
techniques (see, e.g., [24,25]). Regardless of how the mapping is learned and carried
out, a portfolio-based algorithm selector partitions any given set of instances Ω into
subsets Ωj , such that each Ωj consists of the instances for which one particular solver
from the given portfolio, say, sj ∈ S, is selected. Ideally, each instance gets mapped to
the solver that performs best on it; in this case, sj dominates all other solvers in subset
Ωj . Although, unlike portfolio-based algorithm selection methods such as SATzilla, our
approach does not use any problem-specific instance features, one of the homogeneity
measures we introduce in Section 3.1 is based on the intuition that a given instance
set is perfectly homogeneous if, and only if, a single solver (or in our case: solver
configuration) dominates all others on all instances from the set.

2.2 Feature-based instance clustering

A rather different approach to algorithm selection underlies the more recent ISAC proce-
dure [12]. Here, instances are clustered based on problem-dependent instance features.
Next, an automated configuration procedure is used to find a good configuration for
each of the instance subsets thus obtained. Unlike the clustering approaches we con-
sider in our work, ISAC does not use runtimes of certain configurations of the given
target algorithm for the clustering. The algorithm selector produced by ISAC maps each
instance to the configuration associated with the nearest cluster, as determined based on
instance features.

CluPaTra [13] also partitions instance sets based on instance features and subse-
quently optimizes parameters of the given target solver for each cluster. Lindawati
et al. [13] have shown that clustering instance sets in this way leads to better perfor-
mance than using random clustering of the same instances. This supports the idea that
a parametric solver has a higher configuration potential on clustered instance sets if the
clustering improves the homogeneity of these sets with respect to the parametric solver.

Our approach to clustering instance sets, explained in detail in Section 4, differs
from ISACand CluPaTraby not using any problem-specific instance features. While
such features can be quite cheap to compute, expert knowledge is required to define and
implement them. In addition, their use is based on the assumption that “[. . . ] instances
with alike features behave similarly under the same algorithm” [12]. We are not aware
of any published work that provides stringent support for this hypothesis, and existing
work (such as [12,13]) does not directly investigate it.3 The homogeneity measures we
introduce here offer a way of assessing to which extent clustering based on problem-

3 The fact that problem instances that are indistinguishable with respect to simple syntactic fea-
tures, such as critically constrained Random-3-SAT instances with a fixed number of variables,
have been observed to vary substantially in difficulty for state-of-the-art solvers for the respec-
tive problems seems to contradict this hypothesis; however, one could conjecture that such
instances might differ in more sophisticated, yet still cheaply computable features.



dependent features produces sets of instances for which different configurations of the
same target algorithm show consistent performance rankings.

3 Homogeneity Measures

In this section, we deal with theoretical considerations to develop homogeneity mea-
sures for analyzing instance sets as motivated in Section 1. Intuitively, we characterize
homogeneity as follows: An instance setΩ is homogeneous for a given set Φ of configu-
rations of a parametric solver if the relative performance of the configurations in Φ does
not vary across the instances in Ω. In many cases, there will be deviations from perfect
homogeneity, and because the degree to which these variations occur is of interest, we
want to consider real-valued measures of instance set homogeneity.

Unfortunately, for most interesting parametric solvers, the configuration spaces are
far too big to permit the evaluation of all configurations. For example, the discretized
configuration space of the highly parametric SAT and ASP solver Clasp [26] is of size
≈ 1018. Therefore, following Hutter et al. [11], we consider sets of randomly sampled
configurations as a proxy for the entire space. Somewhat surprisingly, even for rela-
tively small samples, this rather simplistic approach turns out to be quite effective for
optimizing the homogeneity of instance sets, as will become evident from the empirical
results presented in Section 5.

To formally define homogeneity measures, we use Φ to denote the space of all con-
figurations (φ ∈ Φ for individual configurations), Φr ⊂ Φ for a subset of n configu-
rations sampled uniformly at random from Φ, and Ω for an instance set (ω ∈ Ω for
individual instances).

3.1 Ratio Measure - Similarity to the Oracle

Our first measure is motivated by our practical approach to determine whether a port-
folio solver approach is useful for an instance set. The runtimes of all configurations
(or solvers) in the portfolio are measured for each instance. Based on the sum of their
runtimes over the given instance set, we compare the performance of the best config-
uration and that of the oracle (sometimes also called virtual best solver)4 constructed
from all the sampled configurations; if their performance is equal, there is one dominant
configuration for the entire instance set, and portfolio-based selection offers no advan-
tage over statically choosing this dominant configuration. We call such an instance set
homogenous w.r.t. the given set of configurations. This approach corresponds to the
interpretation of portfolio solvers given in Section 2.1.

Following this intuition, we define the ratio measure, QRatio, to measure homo-
geneity based on the ratio of the runtimes between the best configuration and the oracle,
as shown in Equations 1 to 3, where t′Oracle(Φr)

(Ω) represents the performance of the
oracle and t′φ∗(Ω) that of the best configuration in Φr.

4 The performance of the oracle solver on a given instance is the minimum runtime over all
given configurations/solvers.



QRatio(Φr, Ω) = 1−
t′Oracle(Φr)

(Ω)

t′φ∗(Ω)
with QRatio ∈ [0, 1[ (1)

s.t.

t′φ(Ω) =

|Ω|∑
i

t(ωi, φ) and t′Oracle(Φr)
(Ω) =

|Ω|∑
i

min
φ∈Φr

t(ωi, φ) (2)

φ∗ ∈ argmin
φ∈Φr

t′φ(Ω) (3)

QRatio is defined such that a value of 0 corresponds to minimal inhomogeneity, and
higher values characterize increasingly inhomogeneous instance sets.

3.2 Variance Measure - Performance Similarity

The intuition behind our second measure is closely related to the question whether dif-
ferent evaluators rate a set of products similarly. More precisely, we want to determine
whether m products (configurations) are rated similarly by n evaluators (instances)
based on a given evaluation measure (runtime). This setting is similar to that addressed
by the Friedman hypothesis test; however, the Friedman test is not directly applicable in
our context, in part because we are typically dealing with noisy and censored runtimes.

Our variance measure is based on the general idea of assessing instance set homo-
geneity by means of the variances in runtimes over instances for each given configu-
ration. An instance set is perfectly homogenous, if (after compensating for differences
in instance difficulty independent of the configurations considered, i.e., for situations
in which certain instances are solved faster than others by all configurations) for every
given configuration, all instances are equally difficult.

To account for differences in instance difficulty that are independent of the con-
figurations considered, we perform a standardized z-score normalization of the perfor-
mance of configurations on instances such that for any given instance, the distribution
of performance (here: log-transformed runtime) over configurations has mean zero and
variance one. As we will see in Section 5.2, these distributions are often close to log-
normal, which justifies standardized z-score transformation on log-transformed runtime
measurements.

Formally, if V ar(t∗φ(Ω)) is the variance of the log-transformed, standardized z-score
normalized runtimes of configuration φ ∈ Φr over the instances in the given set Ω, we
define the variance measure QV ar as follows:

QV ar(Φr, Ω) =
1

|Φr|
∑
φ∈Φr

V ar(t∗φ(Ω)) (4)

As in the case of QRatio, QV ar ≥ 0, where QV ar = 0 characterizes perfectly ho-
mogenous instance sets, while higher values correspond to increasingly inhomogeneous
sets.



4 Clustering of Homogeneous Subsets

Based on the homogeneity measures introduced in Section 3, instances within the given
set Ω can be clustered with the goal of optimizing homogeneity of the resulting subsets
of Ω.

We note that in order to calculate the values of QRatio and QV ar, runtimes for
each configuration on each instance have to be measured; each of these runtimes can
be interpreted as an observation on the behavior of the given parametric algorithm on
the instance. Under this interpretation of the data, classical clustering approaches can
be applied, in particular, K-Means [27], Gaussian Mixtures [28] and Hierarchical Ag-
glomerative Clustering [29]. While many more clustering approaches can be found in
the literature, these methods are amongst the most prominent and widely used classical
clustering approaches based on observations.

Agglomerative Hierarchical Clustering[29] iteratively merges the clusters with the
lowest distance, where distance between clusters can be defined in various ways. As
an alternative to clustering based on distances between the observation vectors, we also
explored a variant that always merges the two clusters resulting in the best homogeneity
measure (of the merged cluster). Clusters will be merged until a termination criterion is
satisfied (e.g., a given number of desired clusters is reached). Unfortunately, the prop-
erty Ω1 ⊂ Ω2 ⇒ Q(Ω1) < Q(Ω2) cannot be guaranteed for arbitrary instance sets Ω1

and Ω2, where Q is either of our homogeneity measures. This means that merging two
clusters of instances does not necessarily result in a strict improvement in homogeneity.
Therefore, we analyzed how our homogeneity measures vary as the number of clusters
increases (see Section 5.4).

5 Experiments

In this section, we evaluate empirically how our approach can be used to analyze the
homogeneity of instance sets on different kinds of solvers. First, we explain our exper-
imental setting. Next, we characterize the distributions of runtimes on a given instance
over solver configurations, which matter in terms of the standardized z-score normaliza-
tion underlying our variance-based homogeneity measure, QV ar. Then, we investigate
to which degree our homogeneity measures agree with the earlier, qualitative analysis
of homogeneity by Hutter et al. [11]. Finally, we investigate the question whether al-
gorithm configurators, here ParamILS, perform better on more homogeneous instance
sets, as obtained by clustering instances from large and diverse sets.

5.1 Data and Solvers

We used the runtime measurements produced by Hutter et al. [11]5; their data in-
cludes runtimes of the mixed integer programming (MIP) solver CPLEX on the in-
stance sets Regions100 (CPLEX-Regions100: 2000 instances, 50 sec cutoff) and
Orlib (CPLEX-Orlib: 140 instances, 3000 sec cutoff); the local search SAT solver

5 See http://www.cs.ubc.ca/labs/beta/Projects/AAC/empirical_
analysis/index.html

http://www.cs.ubc.ca/labs/beta/Projects/AAC/empirical_analysis/index.html
http://www.cs.ubc.ca/labs/beta/Projects/AAC/empirical_analysis/index.html


Spear on the instance sets IBM (SPEAR-IBM: 100 instances, 3000 sec cutoff) and SWV
(SPEAR-SWV: 100 instances, 3000 sec. cutoff); and the SAT solver Satenstein on the
instance sets QCP (SATenstein-QCP: 2000 instances, 50 sec cutoff) and SWGCP
(SATenstein-SWGCP: 2000 instances, 50 sec cutoff). In each case, runtime mea-
surements were provided for 1000 solver configurations chosen uniformly at random.
Instances that could not be solved by any configuration were excluded from further
analysis of our homogeneity measures, as were configurations that could not solve any
of our instances. (However, for the clustering performed in later experiments, these
instances and configurations were not eliminated.)

We augments this extensive data set with addition runtime data for the successful
ASP [30] and SAT solver Clasp [26] (in version 2.0.2). Clasp won the system competi-
tions in the ASP competitions 2009 and 2011 and several gold medals in the 2009 and
2011 SAT competitions. As an open source project6, Clasp is freely available. It also is
a highly parametric solver with over fifty parameters, 38 of which we considered in this
work (these all influence the solving process for SAT instances).

We applied Clasp to two subsets of the crafted and industrial/application bench-
marks used in the SAT competitions between 2003 and 2009, dubbed CLASP-Crafted
and CLASP-Industrial. Furthermore, we used a set of SAT-encoded bounded model
checking problems [31] dubbed CLASP-IBM. We removed all instances for which the
running time of every configurations of Clasp from a manually chosen set required less
than 3 seconds or more than 600 seconds; this was done in order to avoid problems
with inaccurate runtime measurements and excessive occurrence of timeouts as well as
to ensure that all experiments could be completed within reasonable time. After this fil-
tering step, we were left with 505 instances in the CLASP-Crafted set, 552 instances
in CLASP-Industrial, and 148 instances in CLASP-IBM.

We measured runtimes for 32 configurations of Clasp chosen uniformly at random
(from a total of ≈ 1018) for each instance, using a cutoff of 600 seconds per run.7

These runtime measurements required a total of about 350 CPU hours. In the same way
as done with the data of Hutter et al., instances that could not be solved by any of our 32
Clasp configuration were excluded from further analysis of our homogeneity measures,
as were configurations that could not solve any of our instances.

All runs of Clasp were carried out on a Dell PowerEdge R610 with an Intel Xeon
E5520 (2.26GHz), 48GB RAM running 64-bit Scientific Linux, while the runtime data
of Hutter et al. [11] was measured on a 3.2GHz Intel Xeon dual core CPUs with 2GB
RAM running Open SuseLinux 10.1.

5.2 Normalization and Distributions

Clearly, the distribution of runtimes over target algorithm configurations on a given
problem instance depends on the semantics on the given target algorithm’s parameters.
As motivated in Section 3.2, our variance-based homogeneity measure requires normal-
ization. The approach we have chosen for this normalization is based on our finding that

6 http://potassco.sourceforge.net/
7 This runtime data is available at
http://www.cs.uni-potsdam.de/wv/clusteredHomogeneity.

http://potassco.sourceforge.net/
http://www.cs.uni-potsdam.de/wv/clusteredHomogeneity


Instance Sets normal log-normal exponential Weibull
CPLEX-Orlib 0.988(0.002) 0.494(0.160) 0.906(0.016) 0.859(0.036)
SPEAR-IBM 0.911(0.048) 0.533(0.155) 0.911(0.025) 0.867(0.055)
SPEAR-SWV 0.473(0.419) 0.243(0.496) 0.689(0.134) 0.351(0.421)
SATenstein-QCP 0.992(0.003) 0.063(0.474) 0.840(0.033) 0.055(0.413)

Table 1: Quality of fit for distributions of runtime on given problem instances over
randomly sampled sets of algorithm configurations, assessed using the Kolmogorov-
Smirnov goodness-of-fit test: average rejection rate of test over instances (low values
are good) and average p-values (for details see text).

the distributions of log-transformed running times tends to be normal, described in the
following.

We used the Kolmogorov-Smirnov goodness-of-fit test (KS test) with a significance
level of 0.05 to evaluate for each instance, whether the empirical distribution of run-
times over configurations was consistent with a log-normal, normal, exponential or
Weibull distribution. We excluded the Clasp data from this analysis, since each dis-
tribution was only based on 32 data points, resulting in very low power of the KS
test. Since the occurrence of a significant numbers of timeouts for a given instance
renders the characterization of the underlying distributional family via a KS test im-
possible, we also eliminated all instances from our test on which more than half the
given configuration timed out; since this would have left very few instances in the sets
CPLEX-Regions100 and SATenstein-SWGCP, we did not consider these sets in
our distributional analysis.

Table 1 shows the averaged test results over all remaining instances, where a result
of 1 was recorded, if the respective KS test rejected the null hypothesis of distribution
of the given type, and 0 otherwise; we also reported average p-values for each set. As
can be seen from these results, in most cases, the distributions tend to be log-normal,
whereas the three other types of distributions have much weaker support.

5.3 Evaluation of Homogeneity

Runtimes of instance sets on a set of configurations can be visualized with heat maps, as
illustrated in Figure 1; following Hutter et al. [11], we have sorted configurations and
instances according to their average PAR-10 scores and represented log-transformed
runtimes using different shades of gray (where darker grays correspond to shorter run-
times). As noted in their work, cases where the relative difficulty of the instances varies
between different configurations give rise to checkerboard patterns in these plots, and
using this qualitative criterion, the CPLEX-Orlib and CLASP-IBM configuration
scenarios appear to be rather inhomogeneous, in contrast to the homogeneous instance
sets CPLEX-Regions100 and SATenstein-QCP.

As can be seen from the column labeled unclustered in Table 2, our variance-
based measure is consistent with these earlier qualitative observations. (The remain-
ing columns are discussed later.) In particular, the values for the homogenous sets
CPLEX-Regions100 and SATenstein-QCP are low compared to the remaining
instance sets, which show all clear signs of qualitative inhomogeneity. On the other
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Fig. 1: Heat maps of log transformed runtime data from the configuration scenarios
studied by Hutter et al. [11] and three new scenarios using the Clasp ASP solver. (The
diagrams were generated with the Matlab code provided by Hutter et al.)

hand, coarser checkerboard patterns do not always correspond to instance sets with
higher variance measures for three reasons: (1) the data for Clasp is based on far fewer
configuration, leading necessarily to coarser patterns in the plots; (2) deviations from
uniformity appear more prominent towards the middle of our gray scale than towards
the dark and light ends of the spectrum; and (3) large local deviations can have a large
influence on the variance measure, but are not necessarily visually as prominent as
smaller global variations.

Our ratio measure also shows the lowest values for the qualitatively homogenous
sets CPLEX-Regions100 and SATenstein-QCP, but ranks the remaining sets dif-
ferently from the variance measure. In fact, considering the definition of ratio measure,
it becomes clear that in extreme cases, it may substantially disagree with the qualitative
visual measure of Hutter et al.: For example, if one configuration dominates all others,



Instance Sets unclustered configuration-based feature-based
QRatio QV ar QRatio QV ar QRatio QV ar

CPLEX-Regions100 0.41 0.23 0.11 0.23 − −
CPLEX-Orlib 0.50 0.71 0.35 0.40 − −
SPEAR-IBM 0.68 0.75 0.40 0.64 0.58 0.64
SPEAR-SWV 0.74 0.89 0.20 0.72 0.43 0.77
SATenstein-QCP 0.30 0.20 0.25 0.11 0.37 0.17
SATenstein-SWGCP 0.62 0.35 0.62 0.35 0.68 0.41
CLASP-Crafted 0.86 0.39 0.82 0.41 0.79 0.35
CLASP-Industrial 0.81 0.58 0.71 0.50 0.71 0.54
CLASP-IBM 0.57 0.41 0.37 0.30 0.40 0.36

Table 2: Homogeneity measures QRatio and QV ar on the entire instance set
(unclustered), after configuration-based Gaussian Mixture clustering in four sets
(configuration-based), and after feature-based K-Means clustering also in four sets
(feature-based). All measures are averages based on 4-fold cross validation (for details
see text).

but the remaining configurations are highly inconsistent with each other in terms of
their relative performance over the given instance set, the ratio measure would be very
low, yet, the corresponding heat map would display a prominent checker-board pattern.
This illustrates that reasonable and interesting measures of homogeneity, such as the
ratio measure provide information that is not easily apparent from the earlier qualita-
tive criterion. It also indicates that a single quantitative measure of homogeneity, such
as our variance measure, may not capture all aspects of instance set homogeneity of
interest in a given context.

5.4 Comparison of different Clustering Algorithms

We now turn our attention to the question whether partitioning a given instance set into
subsets by means of clustering techniques leads to more homogenous subsets accord-
ing to our ratio and variance measures, as one would intuitively expect. To investigate
this question, we used the clustering approaches from Section 4, based on the observed
runtimes in conjunction with Gaussian Mixtures and Agglomerative Hierarchical Clus-
tering as well as for the direct optimization of the homogeneity measures using Ag-
glomerative Hierarchical Clustering.

Inspired by ISAC [12], we also clustered our instance sets based on cheaply com-
putable instance features [15], using ten runs of the K-Means algorithm for each set.
(Preliminary experiments suggested that Gaussian Mixtures clustering on instances fea-
tures does not yield results better than those produced by K-Means.) In addition, the in-
stances were clustered uniformly at random to obtain a baseline against which the other
clustering results could be compared. The SAT instance features were generated with
the instance feature generator of SATzilla 2011 [15], which provides features based on
graph representations of the instance, LP relaxation, DPLL probing, local search prob-
ing, clause learning, and survey propagation. Since we did not have feature computation



code for MIP instances, we did not perform feature-based clustering on CPLEX-Orlib
and CPLEX-Regions100.

To assess the impact of configuration-based clustering on instance set homogeneity,
we used a 4-fold cross validation approach, where 3/4 of the configurations were used
as a basis for clustering the instance set, and the remaining 1/4 was used for measuring
instance homogeneity. (More then 4 folds could not be used, since that would have left
too few configurations for measuring homogeneity.) The results in Table 2 and Figure
2 are averaged over the 4 folds, where within each fold, we combined the homogeneity
measures for each cluster in the form of an average weighted by cluster size.

Figure 2 shows how our homogeneity measures vary with the number of clusters
for instance sets CLASP-Crafted, CLASP-Industrial, and CLASP-IBM (the
results for the other instance sets are qualitatively similar and have been omitted due
to limited space). In most cases, Gaussian Mixture(B) and the feature-based cluster-
ing (5) lead to considerable improvements in the ratio measure (Figure 2a) compared
to random clustering. The same holds w.r.t. the variance measure (Figure 2b), which
also tends to be improved by agglomerative clustering (×). The reasons for the oscilla-
tions seen for Gaussian Mixture clustering on CLASP-Crafted are presently unclear.
Overall, with the exception of CLASP-Crafted, configuration-based Gaussian Mix-
ture clustering tends to produce the biggest improvements in instance set homogeneity.

Interestingly, agglomerative clustering in which we directly optimized the variance
measure or ratio measure tended to give good results on our training sets, but those
results did not generalize well to our testing scenarios (in which a disjoint set of config-
urations was used for measuring homogeneity).

In Table 2, we present numerical results for Gaussian Mixture clustering of our
instance sets into four subsets. (We chose four subsets, because the efficiency, mea-
sured as the number of clusters in proportion to the optimization of our homogeneity
measures, peaked around this number of clusters.) As can be seen from these results,
configuration- and feature-based clustering resulted in improvements in homogeneity
for almost all instance sets, and configuration-based clustering, although computation-
ally considerably more expensive, tends to produce more homogenous subsets than
feature-based clustering. (Preliminary observations from further experiments currently
underway suggest that even better results can be obtained from configuration-based
clustering using K-Means with multiple restarts.) The fact that these results were ob-
tained using 4-fold cross-validation on our configuration sets indicates that improved
homogeneity w.r.t. the configurations considered in the clustering process generalizes
to previously unseen configurations.

5.5 Evaluation of Configuration Improvement

The goal of our final experiment was to investigate the hypothesis that automatic algo-
rithm configuration yields better results on more homogenous instance sets. Therefore,
we compared the results from applying the same standard configuration protocol to
some of our original instance sets and to their more homogenous subsets obtained by
clustering. This should not be misunderstood as an attempt to design a practically useful
configuration strategy based on homogeneity-improving clustering, which, in order to
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Fig. 2: QRatio (a) and QV ar (b) for a varying number of clusters; − random, × Ag-
glomerative Clustering, B Gaussian Mixture, � Agglomerative Clustering with QV ar
optimization, ♦ Agglomerative Clustering with QRatio optimization, 5 feature-based
K-Means clustering

be practical, would have to use cheaply computable features rather than the ones based
on runtimes of a set of configurations used here (see, e.g., [12,17]).

For this experiment, we configured Clasp on the instance sets of CLASP-Crafted,
CLASP-Industrial, and CLASP-IBMwith the FocusedILS variant of the ParamILS
framework (version 2.3.5) [9]. For each of CLASP-Crafted and CLASP-IBM, we
conducted four independent runs of FocusedILS with a total time budget of 48 CPU
hours per run, and for CLASP-Industrial, we performed 10 runs of FocusedILS
of 72 CPU hours each, since this scenario was considerably more challenging. For each
set, we then compared the default configuration of Clasp for SAT solving (Default)
against a configuration optimized on the entire instance set (Entire), configurations op-
timized for each of the four subsets obtained by clustering (4 Clusters), the oracle per-
formance (also called virtual best solver) over those four configurations (Oracle), and
the performance obtained when running on each instance a version of Clasp optimized
specifically for that instance by means of a single, 3 CPU hour run of FocusedILS (Sin-
gle Configuration). With the exception of the last of these scenarios, the performance
measurements reported in Table 3 were based on a set of test instances disjoint from
the instances used for configuration, and those sets were obtained by random stratified
splitting of each original clustered set into equal training and test sets.

The clustering method used in the context of these experiments was Gaussian Mix-
ture clustering, based on the assumption that clusters should be normally distributed [12,32]



Instance Set # Default Entire Set 4 Clusters Oracle Single Configuration
CLASP-Crafted 254 883(34) 422(15) 361(12) 51(9) 35(0)
CLASP-Industrial 276 1607(70) 1310(56) 1164(50) 721(30) 83(0)
CLASP-IBM 75 2125(26) 1220(15) 1216(15) 1210(13) 135(0)

Table 3: Runtimes in terms of PAR10 in CPU seconds (and number of timeouts) ob-
tained by various configurations of Clasp along with (idealized) oracle and per-instance
configuration performance (for details, see text).

and the of the clustering methods we considered, Gaussian Mixtures performed best on
average in five out of six cases in Figure 2b. The target number of clusters was chosen
to be four for the reasons explained in Section 5.4. Each instance subset thus obtained
was split into a training and test set as previously explained, and Clasp was then con-
figured for each of these training sets. After evaluating these configurations on the cor-
responding test sets, we aggregated the performance using weighted averaging, where
the weights were given by the cluster sizes.

The results shown in Table 3 confirm that automated configuration of Clasp on the
more homogenous instance sets obtained by clustering is more effective than configu-
ration on the original, less homogenous instance sets. Not too surprisingly, algorithm
selection between the resulting configurations can in principle yield additional improve-
ments (as seen from the oracle results), and configuration on individual instances has the
potential to achieve further, dramatic performance gains. We note that single-instance
sets are, intuitively and by definition, completely homogenous and therefore represent
an idealistic best-case scenario for automated algorithm configuration. Furthermore, the
oracle performance provides a good estimate of the performance of a parallel portfolio
of the respective set of configurations, whose performance is evaluated solely based on
wallclock time.

6 Conclusions and Future Work

In this work, we introduced two quantitative measures of instance set homogeneity in
the context of automated algorithm configuration. Our measures provide an alterna-
tive to an earlier qualitative visual criterion based on heat maps [11]; one of them, the
variance measure, gives results that are highly consistent with the visual criterion, and
both of them capture aspects of instance set homogeneity not easily seen from heat
maps. Furthermore, we provided evidence that our measures are consistent with the
previously informal intuition that more homogenous instance sets are more amenable
to automated algorithm configuration (see, e.g., [13]).

The proposed homogeneity measures can be used directly to assess whether au-
tomated configuration of a given parametric algorithm using a particular instance set
might be difficult due to instance set inhomogeneity. In addition, the ratio measure
helps to assess the specific potential of portfolio-based approaches in a given config-
uration scenario, including instance-based algorithm configuration [15,12], portfolio
multithreading [33] and sequential portfolio solving [34,35].



Unfortunately, like the previous qualitative approach, our quantitative homogeneity
measures are computationally expensive. In future work, we plan to investigate how this
computational burden can be reduced, for example, by using promising configurations
encountered during algorithm configuration instead of randomly sampled ones.
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