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Abstract. In view of the increasing importance of hardware parallelism,
a natural extension of per-instance algorithm selection is to select a set
of algorithms to be run in parallel on a given problem instance, based on
features of that instance. Here, we explore how existing algorithm selection
techniques can be effectively parallelized. To this end, we leverage the
machine learning models used by existing sequential algorithm selectors,
such as 3S , ISAC , SATzilla and ME-ASP, and modify their selection
procedures to produce a ranking of the given candidate algorithms; we
then select the top n algorithms under this ranking to be run in parallel
on n processing units. Furthermore, we adapt the pre-solving schedules
obtained by aspeed to be effective in a parallel setting with different
time budgets for each processing unit. Our empirical results demonstrate
that, using 4 processing units, the best of our methods achieves a 12-fold
average speedup over the best single solver on a broad set of challenging
scenarios from the algorithm selection library.

Keywords: Algorithm Selection, Parallel Portfolios, Constraint Solving,
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1 Introduction

For many challenging computational problems, such as SAT, ASP or QBF, there
is no single dominant solver. Instead, the state of the art for these problems
consists of a set of non-dominated solvers, each of which performs best on certain
types of problem instances. In this situation, per-instance automated algorithm
selection techniques can be used to leverage the strength of such complementary
sets, or portfolios, of solvers (see, e.g., [27, 16]). Fundamentally, for a new problem
instance, these techniques map a set of cheaply computable instance features to
a solver to be run. This mapping is typically learned, using machine learning
techniques, from a representative set of training data. Unfortunately, even the best
per-instance algorithm selection techniques do not always succeed in identifying
the best solver for all problem instances, and their performance can suffer as a
result of such incorrect selections.

Considering the fact that increases in computational power are nowadays
primarily achieved through increased hardware parallelism, one approach for
improving instance-based algorithm selection techniques is to select not one, but
multiple solvers from a given portfolio, and to run these in parallel. The key idea
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Fig. 1: Parallel portfolio selection with parallel pre-solving for four processing
units.

behind this approach is to hedge against incorrect single-solver selections while
exploiting readily available parallelism. There is some evidence in the literature
that manually crafted per-instance parallel portfolio selectors can achieve impres-
sive performance. For example, the portfolio SAT solver CSHCpar [21, 22] won
the open parallel track in the 2013 SAT Competition. The idea of CSHCpar is
simple yet effective: It always runs, independently and in parallel, the parallel
SAT solver Plingeling with 4 threads, the sequential SAT solver CCASat , and
three per-instance selected solvers. These per-instance solvers are selected by
three models that are trained on application, hard-combinatorial and random
SAT instances, respectively. While CSHCpar is particularly designed for the
SAT Competition with its 8 available cores and its three types of instances, in
the following, we investigate a general, fully automated approach for selecting
parallel portfolios without any of the special assumptions underlying CSHCpar .

Given the large variety of existing sequential algorithm selectors, we study
the question how such existing selectors can be effectively parallelized. To this
end, we use the learned models of sequential algorithm selectors and modify the
selection procedure such that we rank algorithms for a given instance and select
the top n algorithms for n processing units (e.g., processors or processor cores.)

State-of-the-art algorithm selectors make extensive use of pre-solving schedules,
i.e., they run a sequence of solvers prior to per-instance algorithm selection [31,
14]. This makes it possible to solve easy instances quickly, without inducing
the overhead of feature computation. To effectively use parallel resources and
minimize sequential bottlenecks, our approach uses parallel rather than sequential
pre-solving schedules, which can be obtained using parallel algorithm schedule
systems, such as, aspeed [8] or 3S [14].

Figure 1 shows the extension of sequential algorithm selection to parallel
portfolio selection with pre-solving schedules. On the first processing unit, we
execute the standard workflow of sequential algorithm selectors: to solve a given
instance i, we run a pre-solving schedule for a limited amount of time (e.g., 10%
of the overall time budget [14]); if the pre-solving schedule fails to solve i, we



compute instance features f(i) (i.e., numerical properties of the instance), and
then, based on f(i), select the putatively best algorithm for the given instance.
In the parallel workflow, we can spend the time used by feature computation for
longer pre-solving schedules on all threads but the first.

To ensure the scalability of parallel portfolios selection to many algorithms
and processing units, we aim to develop methods that satisfy the following
requirement:

(i) the online selection of parallel portfolios has to be efficient, i.e., polynomial
in the size of the parallel portfolio.

Our general methods for parallel portfolio selection are applicable in any scenario
for which the following assumptions hold:

(ii) the algorithm portfolio consists of deterministic algorithms; and on each
processing unit, we select a different algorithm;

(iii) algorithms running in parallel do not communicate (e.g., no clause sharing of
SAT solvers); and

(iv) we do not have special structural knowledge about the problem domain (e.g.,
we do not know that SAT instances can be divided into three types).

Assumption (ii) simplifies the selection of a parallel portfolio because there is
no noise in the training data, and repeated runs of algorithms are not increasing
the chance of solving an instance such that we should select each algorithm at
most once. Since communication between algorithms often results in stochastic
behavior (e.g., nearly all parallel SAT solvers with clause sharing are stochastic),
Assumption (iii) helps to satisfy Assumption (ii). Furthermore, if algorithms
would communicate, the performance of an algorithm could not be estimated
independently from the other algorithms in the portfolio. We note that Assump-
tion (ii) does not allow the selection of parallel algorithms, e.g., the parallel SAT
solver Plingeling . Last but not least, Assumption (iv) states that, in contrast
to the CSHCpar solver, we have no structural knowledge about the problem
domain, since such knowledge is only available for specific problems.

Given Assumption (ii), our approach cannot utilize more processing units
than there are algorithms in our portfolio (4 to 31 algorithms in our experiments).
Therefore, the approaches we consider focus on parallelization with a relatively
modest number of processing units, as found in current off-the-shelf computing
hardware. Other approaches exist for scaling to higher degrees of parallelism (see,
e.g., [3]).

In the following, we will first discuss related work (Section 2). Next, in Sec-
tion 3, we extend well-known algorithm selection approaches from SATzilla [31],
ME-ASP [23], ISAC [15], and 3S [14] to parallel portfolio selection respecting our
requirements. Then, in Section 4, we adapt the algorithm (pre-solving) schedules
of aspeed [8] to the setting of Figure 1, with different time budgets for each
processing unit. Finally, we present an evaluation of our per-instance parallel
portfolios on scenarios of the algorithm selection library1, which allows a fair

1 aslib.net



and thorough evaluation on a set of 12 different constraint solving domains from
SAT, MAXSAT, CSP, QBF, and ASP, and pre-marshalling.

2 Related Work

Our work draws on two lines of research reaching back to John Rice’s seminal
work on algorithm selection [27] and the work by Huberman et al. [10] on parallel
algorithm portfolios. It addresses the dynamic resource allocation challenge, which
has been identified as one of the seven challenges in parallel SAT solving [7].

Recently, the algorithm selection approach of CSHC [21], which is based
on cost-sensitive hierarchical clustering, was extended to selection of parallel
portfolios in CSHCpar [22]2. This approach differs from ours in that it relies
on explicitly identified, distinct classes of problem instances (as is the case with
the different tracks of the SAT Competition) and provides no obvious way of
adjusting the number of processing units.

The extension of 3S [14] to parallel portfolio selection, dubbed 3Spar [20]2,
selects a parallel portfolio using k-NN to find the k most similar instances in
instance feature space. Using integer linear programming (ILP), 3Spar constructs
a static pre-solving schedule offline and a per-instance parallel algorithm schedule
online, based on training data of the k most similar instances. The ILP problem
that needs to be solved for every instance is NP -hard and its time complexity
grows with the number of parallel processing units and number of available solvers.
Unlike our approach, during the feature computation phase, 3Spar runs in a
purely sequential manner. Since feature computation can require a considerable
amount of time (e.g., more than 100 seconds on industrial SAT instances), this
can leave important performance potential untapped.

ISAC [15] combines algorithm configuration and algorithm selection by (i)
clustering the training instances in the feature space and (ii) using an algorithm
configuration procedure [12, 2] to optimize a parametric solver on each cluster. For
a new problem instance i to be solved, ISAC selects the configuration which was
determined for the cluster closest to i. The most recent ISAC version, ISAC 2.03,
performs only algorithm selection and uses the best of a fixed set of algorithms
in Step (ii); it also provides a method for selecting parallel portfolios for each

cluster of instances by searching over all
(|A|

n

)
combinations of |A| algorithms

and n processing units. As this approach quickly becomes infeasible for growing
|A| and n, Yuri Malitsky, author of ISAC 2.0, recommends to limit its use to at
most 4 processing units (README file).

The aspeed system [8] solves a similar scheduling problem as 3Spar , but
generates a static algorithm schedule during an off-line training phase, thus
avoiding overhead in the solving phase. Unlike 3Spar , aspeed does not support
including parallel solvers in the algorithm schedule, and the algorithm schedule
is static and not per-instance selected. For this reason, aspeed is not directly

2 Unfortunately, no implementation of CSHCpar and 3Spar is publicly available.
3 https://sites.google.com/site/yurimalitsky/downloads



applicable to per-instance selection of parallel portfolios; however, our approach
uses it to effectively compute parallel pre-solving schedules.

RSR-WG [34] combines a case-based-reasoning approach from CP-Hydra [24]
with greedy construction of parallel portfolio schedules via GASS [28] for CSPs.
Since the schedules are constructed on a per-instance basis, RSR-WG relies on
instance features. In the first step, a schedule is greedily constructed to maximize
the number of instances solved within a given cutoff time, and in the second step,
the components of the schedule are distributed over the available processing units.
In contrast to our approach, RSR-WG optimizes the number of timeouts and
is not directly applicable to arbitrary performance metrics. Since the schedules
are optimized online on a per-instance base, RSR-WG has to solve an NP -hard
problem for each instance, which is done heuristically.

Finally, there is some work on parallel portfolios with dynamically adjusted
timeshares (see e.g., [5]). Such approaches could eventually be used to dynamically
adjust a portfolio determined by any of the methods we study in the following.

3 Selection of Parallel Portfolios

In this section, we show how to extend existing sequential algorithm selection
approaches to handle parallel portfolio selection. Formally, the selection of parallel
portfolios is an extension of the per-instance algorithm selection problem, in
which not only one algorithm is selected, but rather a set of algorithms to be run
in parallel.

Definition 1. A per-instance parallel portfolio selection problem can be defined
by a 5-tuple 〈I,D, A, U,m〉, where

– I is a set of instances of a problem,
– D is a probability distribution over I,
– A is a set of algorithms for instances in I
– U is a set of parallel processing units available, and
– m : I × A → R is a performance metric measuring the performance of

algorithm a ∈ A on instance i ∈ I.

A solution of this problem is a mapping φu : I → A for each processing unit u ∈ U ;
we refer to such a mapping as a parallel selection portfolio. The performance
metric we aim to minimize across the possible parallel selection portfolios is
Ei∼Dminu∈U m(i, φu(i)).

Since we assume that the algorithms do not communicate with each other
(Assumption (iii)), the performance of a parallel selection portfolio is the perfor-
mance of the best algorithm in the selected portfolio. Therefore, a perfect parallel
selection portfolio would, for each instance, select a set of algorithms containing
the best algorithm for that instance. Ultimately, we would therefore like to model
the per-instance correlations between solvers to select complementary sets of
solvers for each instance.



In this work, however, we pursue a different approach, namely that of generi-
cally extending the various existing sequential selection strategies to the parallel
selection setting, with the goal of assessing the merit of this overall approach
and of empirically studying which sequential selection strategies lend themselves
well to this setting. Since these existing sequential selection strategies do not
model per-instance correlation between the algorithms, we restrict ourselves to
constructing the portfolio in a greedy fashion, choosing the n solvers individually
predicted to be best for a parallel portfolio on n processing units. Such a ranking
of algorithms is admitted by most algorithm selection approaches [17].

Our approach requires, for each sequential algorithm selection mechanism
under consideration, a scoring function

s : I ×A→ R (1)

that ranks the candidate algorithms for a given instance to be solved, such that
the putatively best algorithm receives the lowest score value, the second best
the second lowest score, etc. Then we simply sort the algorithms in A based on
their scorses (breaking ties arbitrarily), using time O(|A| log |A|). Thus, if we can
compute the scores efficiently, we obtain a computationally efficient approach to
parallel algorithm selection, satisfying Requirement (i). In the following, we show
that we can indeed efficiently compute such scores for five prominent algorithm
selection approaches.

Performance-based Nearest Neighbor (PNN) The algorithm selection
approach in 3S [21] in its simplest form uses a k-nearest neighbour approach.
For a new instance i with features f(i), it finds the k nearest training instances
Ik(i) in the feature space F and selects the algorithm that has the best training
performance on them. Formally, given a performance metric m : I ×A→ R, we
define mk(i, a) =

∑
i′∈Ik(i)m(i′, a) and select algorithm arg mina∈Amk(i, a).

To extend this approach to parallel portfolios, we determine the same k
nearest training instances Ik(i) and simply select the n algorithms with the best
performance for Ik. Formally, our scoring function in this case is simply:

sPNN (i, a) = mk(i, a). (2)

In terms of complexity, identifying the k nearest instances costs time O(#f · |I| ·
log |I|), with #f denoting the number of used instance features; and averaging
the performance values over the k instances costs time O(k · |A|).

Distance-based Nearest Neighbor (DNN) ME-ASP [23] implements an
interface for different machine learning approaches used in its selection frame-
work, but its released version uses a simple nearest neighbour approach with
neighbourhood size 1, which also worked best empirically [23]. At training time,
this approach memorizes the best algorithm a∗(i′) on each training instance
i′ ∈ I. For a new instance i, it finds the nearest training instance i′ in the feature
space and selects the algorithm a∗(i′) associated with that instance.

To extend this approach to parallel portfolios, for a new test instance i, we
score each algorithm a by the minimum of the distances between i and any



training instance associated with a. Formally, letting d(f(i), f(i′)) denote the
distance in feature space between instance i and i′, we have the following scoring
function:

sDNN (i, a) = min{d(f(i), f(i′)) | i′ ∈ I ∧ a∗(i′) = a}. (3)

If {i′ ∈ I | a∗(i′) = a} is empty (because algorithm a was never the best
algorithm on an instance) then sDNN (i, a) = ∞ for all instances i. Since we
memorize the best algorithm for each instance in the training phase, the time
complexity of this method is dominated by the cost of computing the distance of
each training instance to the test instance, O(|I| ·#f), where #f is the number
of features.

Clustering The selection part of ISAC [15]4 uses a technique similar to
ME-ASP ’s distance-based NN approach, with the difference that it operates on
clusters of training instances instead of on single instances. Specifically, ISAC
clusters the training instances, memorizing the cluster centers Z (in the feature
space) and the best algorithms â(z) for each cluster z ∈ Z. For a new instance,
similar to ME-ASP , it finds the nearest cluster z in the feature space and selects
the algorithm associated with z.

To extend this approach to parallel portfolios, for a new test instance i, we
score each algorithm a by the minimum of the distances between i and any cluster
associated with a. Formally, using d(f(i), z) to denote the distance in feature
space between instance i and cluster center z, we have the following scoring
function:

sClu(i, a) = min{d(f(i), z) | z ∈ Z ∧ â(z) = a}. (4)

As for DNN, if {z ∈ Z | â(z) = a} is empty (because algorithm a was not the
best algorithm on any cluster) then sClu(i, a) =∞ for all instances i. The time
complexity is as for DNN, replacing the number of training instances |I| with
the number of clusters |Z|.

Regression The first version of SATzilla [31] used a regression approach,
which, for each a ∈ A, learns a regression model ra : F → R to predict perfor-
mance on new instances. For a new instance i with features f(i), it selected the
algorithm with the best predicted performance, i.e., arg mina∈A ra(f(i)).

This approach trivially extends to parallel portfolios; we simply use scoring
function

sReg(i, a) = ra(f(i)) (5)

to select the n algorithms predicted to perform best. The complexity of model
evaluations differs across models, but it is a polynomial for all models in common
use; we denote this polynomial by Preg. Since we need to evaluate one model per
algorithm, the time complexity to select a parallel portfolio is then O(Preg · |A|).

4 In its original version, ISAC is a combination of algorithm configuration and selection,
but only the selection approach was used in later publications.



Pairwise Voting The most recent SATzilla version [32] uses cost-sensitive
random forest classification to learn for each pair of algorithms a1 6= a2 ∈ A
which of them performs better for a given instance; each such classifier ca1,a2 :
F → {0, 1} votes for a1 or a2 to perform better, and SATzilla then selects the
algorithms with the most votes from all pairwise comparisons. Formally, let
v(i, a) =

∑
a′∈A\{a} ca,a′(f(i′)) denote the sum of votes algorithm a receives for

instance i; then, SATzilla selects arg maxa∈A v(i, a).
To extend this approach to parallel portfolios, we simply select the n algo-

rithms with the most votes by defining our scoring function to be minimized
as:

sV ote(i, a) = −v(i, a). (6)

As for regression models, the time complexity for evaluating a learned classifier
differs across classifier types, but it is polynomial for all commonly-used types;
we denote this polynomial function by Pclass. Since we need to evaluate pairwise
classifiers for all algorithm pairs, the time complexity to select a parallel portfolio
is in O(Pclass · |A|2).

4 Parallel Pre-Solving Schedules

State-of-the-art algorithm selectors commonly make use of algorithm schedules
for pre-solving, i.e., they run a sequence of solvers prior to per-instance algorithm
selection [31, 14]. If one of the pre-solvers already solves a given instance, we do
not need to compute instance features for the algorithm selection phase and save
the time induced by the feature computation.

Malitsky et al. [21] and Hoos et al. [8] have already presented how to find
timeout-optimal parallel algorithm schedules. In their settings, the schedules on all
processing units get the same amount of runtime. However, as shown in Figure 1,
the computation of instance features is limited to one processing unit, and we can
run longer pre-solving schedules on all other units. The feature computation time
differs from instance to instance, but since we compute our presolving schedule
offline, we require a constant estimate of the feature computation runtime, FeatT .
To err on the pessismistic side, in each algorithm selection scenario we estimate
FeatT as the maximal feature computation time observed across the scenario’s
training instances.

We added a constraint to the flexible and declarative Answer Set Programming
(ASP [4]) encoding of aspeed [8]5 to ensure that the pre-solving schedule on the
first core is limited by a maximal pre-solving time budget, PreT . All pre-solving
schedules on the other processing units are given an additional budget of FeatT
to ensure we use them while the first core computes features. Please refer to
Listing 1.1 for our ASP encoding.

The problem of optimizing an algorithm schedule is NP -hard. However, the
empirical results of Hoos et al. [8] indicated that the problem of optimizing
parallel schedules gets easier with more processing units. In contrast, ISAC has

5 Since 3S [21] is not publicly available, using it was not an option.



:- not [ slice(1,A,T) = T ] PreT.

:- not [ slice(U,A,T) = T : U != 1 ] PreT+FeatT , unit(U).

Listing 1.1: ASP constraints in the language of the ASP grounder gringo [6].
slice(U,A,T) denotes that algorithm A has a runtime slice T on processing unit
U. The first integrity contraint limits the sum of runtimes T of all algorithms A
on processing unit 1 by the maximal pre-solving runtime PreT (an external
constant). The second integrity constraint does the same for all other units,
but extends the maximal pre-solving runtime by the feature computation time
FeatT (external constant).

to solve a problem offline that gets more complex with more processing units
and is not applicable with more than 4 units.

5 Empirical Evaluation

We now turn to an empirical assessment of our parallel portfolio selection ap-
proaches on twelve algorithm selection scenarios that make up the Algorithm
Selection Library (ASlib).6 These scenarios involve a wide range of hard combina-
torial problems; each of them includes the performance data of a range of solvers
for a set of instances, instance features7 organized in feature groups (we use the
default feature groups), and associated costs for these features (see Table 1). We
refer to the ASlib website (aslib.net) for the details on all scenarios; we chose
ASlib as the basis for our evaluation since this allows us to compare our approach
in a fair and uniform way against other algorithm selection methods. Since all
experiments are based on the data in the scenarios, we did not need to run any
of the algorithms in the portfolio. This ensures repeatability of our experiments,
but it also means that resource contention between algorithms running in parallel
are not reflected in our results. Depending on the hardware used (e.g., multi-core
vs. multi-processor systems), performance may be reduced when running too
many algorithms in parallel.

Setup We implemented our parallel selection approach in the open-source
and flexible algorithm selection framework of claspfolio 2 (2.1.0; using scikit-learn
0.14.1 [25]).8 For the choice of machine learning models, claspfolio 2 follows the
implementations of well-known algorithm selectors; we used random forests for
pairwise voting (SATzilla11 [32]), ridge regression for regression (SATzilla’09 [31])
and k-means for clustering (ISAC [15]).9

6 Since the CSP-2010 scenario consists of only 2 algorithms, it already admits a perfect
portfolio using two processing units. Therefore, we excluded it from our experiments.

7 Instance features typically consist of cheap syntactic features, such as number of
variables and number of clauses, and probing features, i.e., extracting runtime
statistics by running an algorithm for a short time on a given instance.

8 www.cs.uni-potsdam.de/claspfolio/
9 The original ISAC [15] uses g-means, which automatically determines the number of

clusters. In preliminary experiments, we observed that the square root of the number



Scenario |I| |U | |A| #f #fg ∅tf tc Ref.

ASP-POTASSCO 1294 82 11 138 4 1.3 600 [9]
MAXSAT12-PMS 876 129 6 37 1 0.1 2100 [1, 13]
PREMARSHALLING 527 0 4 16 1 0 3600 [29]
PROTEUS-2014 4021 428 22 198 4 6.4 3600 [11]
QBF-2011 1368 314 5 46 1 0 3600 [18, 26]
SAT11-HAND 296 77 15 115 10 41.2 5000 [32, 13]
SAT11-INDU 300 47 18 115 10 135.3 5000 [32, 13]
SAT11-RAND 600 108 9 115 10 22.0 5000 [32, 13]
SAT12-ALL 1614 20 31 115 10 40.5 1200 [33, 13]
SAT12-HAND 767 229 31 115 10 39.0 1200 [33, 13]
SAT12-INDU 1167 209 31 115 10 80.9 1200 [33, 13]
SAT12-RAND 1362 322 31 115 10 9.0 1200 [33, 13]

Table 1: The ASlib algorithm selection scenarios – information on the number of
instances |I|, number of unsolvable instances |U | (U ⊂ I), number of algorithms
|A|, number of features #f , number of feature groups #fg, the average feature
computation cost of the used default features ∅tf , and runtime cutoff tc.

Within claspfolio 2 , we use aspeed [8] with the ASP tools gringo (3.0.5) and
clasp (2.2) [6] with a time budget of at most 300 CPU seconds to effectively
compute pre-solving schedules. Our pre-solving schedules are limited to at most
256 seconds on the first processing unit and an additional 10% of the runtime
cutoff on the other processing units (10% of the runtime cutoff is the maximal
feature computation runtime - parameter of claspfolio 2 ; the runtime cutoff
differs across the ASlib scenarios).

Since speedup is a commonly used performance metric in parallelization
and PAR10 (penalized average runtime, counting each timeout as 10 times the
runtime cutoff) is a commonly used performance metric in algorithm selection,
we assessed our approaches based on PAR10-speedups over the (sequential)
single best algorithm (SB) in the given algorithm portfolios. We note that the
possible speedup is bounded from above by the performance of a perfect algorithm
selector (the virtual best solver VBS ) that always selects the best algorithm for
a given instance without inducing feature computation costs. We used 10-fold
cross validation (i.e., 10 different training and test splits) to obtain an unbiased
performance estimate for claspfolio 2 , as given in ASlib. To avoid artificially
inflating PAR10 scores, we removed from the test sets all instances that could be
solved neither by any of the candidate algorithms nor during feature computation.
Furthermore, to verify which approaches performed statistically indistinguishable
from the best approach, we used permutation tests with 100 000 permutations at
significance level α = 0.05.

Comparison of approaches within claspfolio 2 In Table 2, we report
performance results for the approaches presented in Section 3 as implemented in

of instances gives a good upper bound for the number of clusters; therefore, we did
not used g-means but k-means with this cluster bound.



|U| 1 2 4 8

ASP-POTASSCO (VBS: 25.1)

DNN 2.0 3.8 6.3 18.7
clustering 2.7 3.7 5.8 15.2
PNN 4.1 5.0 8.9 8.6
pairwise-voting 3.2 4.7 7.3 10.8
regression 2.3 3.9 8.6 18.2
SB 1.0 3.0 7.4 8.8

MAXSAT12-PMS (VBS: 51.8)

DNN 8.4 21.4 51.5 (51.8)
clustering 4.8 10.4 21.2 (51.8)
PNN 4.7 7.2 11.6 (51.8)
pairwise-voting 7.7 15.8 31.1 (51.8)
regression 4.7 6.4 21.6 (51.8)
SB 1.0 1.3 1.8 (51.8)

PREMARSHALLING (VBS: 30.8)

DNN 2.7 5.8 (30.8) (30.8)
clustering 2.5 7.0 (30.8) (30.8)
PNN 2.4 4.4 (30.8) (30.8)
pairwise-voting 2.8 7.6 (30.8) (30.8)
regression 2.6 4.7 (30.8) (30.8)
SB 1.0 1.4 (30.8) (30.8)

PROTEUS-2014 (VBS: 408.9)

DNN 5.2 9.2 19.6 46.0
clustering 7.4 7.7 14.2 30.2
PNN 5.9 9.5 23.3 50.9
pairwise-voting 5.8 11.0 20.8 42.6
regression 6.4 9.8 20.4 53.8
SB 1.0 2.7 5.9 10.4

|U| 1 2 4 8

QBF-2011 (VBS: 95.6)

DNN 6.7 14.7 33.6 (95.6)
clustering 4.5 10.5 22.4 (95.6)
PNN 6.3 23.0 40.6 (95.6)
pairwise-voting 8.9 23.1 93.7 (95.6)
regression 4.7 11.9 60.2 (95.6)
SB 1.0 2.7 13.6 (95.6)

SAT11-HAND (VBS: 37.2)

DNN 3.2 5.2 9.6 23.9
clustering 1.6 2.9 4.2 7.0
PNN 2.3 2.8 8.4 10.8
pairwise-voting 3.4 4.8 8.6 10.9
regression 2.9 4.5 8.4 12.5
SB 1.0 1.2 1.9 6.2

SAT11-INDU (VBS: 21.4)

DNN 1.4 1.9 2.6 7.8
clustering 1.3 1.9 3.3 5.3
PNN 1.1 1.5 2.6 5.2
pairwise-voting 2.0 2.4 3.6 4.7
regression 1.3 2.0 3.6 7.8
SB 1.0 1.7 2.9 7.2

SAT11-RAND (VBS: 65.7)

DNN 3.8 11.0 42.2 60.5
clustering 6.1 9.5 32.3 42.7
PNN 6.5 9.3 10.7 60.2
pairwise-voting 4.4 8.3 11.4 60.4
regression 5.9 7.8 8.3 60.3
SB 1.0 5.9 6.8 64.8

|U| 1 2 4 8

SAT12-ALL (VBS: 31.6)

DNN 2.4 4.2 6.3 10.7
clustering 1.5 1.9 2.6 3.5
PNN 2.2 2.9 3.9 7.7
pairwise-voting 2.8 4.1 6.1 9.0
regression 2.1 2.9 4.3 7.1
SB 1.0 1.0 1.4 1.7

SAT12-HAND (VBS: 34.7)

DNN 3.7 6.2 11.4 14.3
clustering 1.8 2.3 3.3 4.6
PNN 2.0 2.8 4.9 7.5
pairwise-voting 4.2 5.4 9.0 12.4
regression 2.9 4.2 7.0 9.8
SB 1.0 1.0 1.4 1.9

SAT12-INDU (VBS: 15.4)

DNN 2.0 2.4 3.4 5.0
clustering 1.3 2.1 2.8 4.6
kNN 1.6 2.3 3.9 5.7
pairwise-voting 2.4 3.0 3.8 5.4
regression 1.9 2.5 3.5 6.3
SB 1.0 1.5 2.5 4.8

SAT12-RAND (VBS: 12.1)

DNN 0.8 1.5 4.7 8.6
clustering 1.3 1.7 2.7 4.9
PNN 1.2 2.1 4.8 7.3
pairwise-voting 1.1 1.7 2.8 6.4
regression 1.3 1.8 5.2 8.3
SB 1.0 1.5 4.0 6.8

Table 2: Speedup on PAR10 (wallclock) in comparison to SB with one processing
unit (U). Entries for which the number of processing units exceed the number of
candidate algorithms are marked ‘NA’. Entries shown in bold-face are statistically
indistinguishable from the best speedups obtained for the respective scenario
and number of processing units (according to a permutation test with 100 000
permutations and α = 0.05). If more processing are available than algorithms,
we run all algorithms and achieve a perfect VBS score (number in parentheses).

claspfolio 2 , for 1 to 8 processing units (U). For 4 processing units, the speedup
over the single best algorithm is between 2.6 (SAT11-INDU with PNN) and
93.7 (QBF-2011 with pairwise voting). The best parallelization approach differed
between the scenarios, which is not too surprising since it is known that there is
no single dominant approach for sequential per-instance algorithm selection. We
note that the recent work on autofolio [19] proposes using algorithm configuration
to determine a well-performing algorithm selection approach and its parameters
for a given scenario. On average, DNN and pairwise voting performed best across
our scenarios; for 4 processing units, both approaches achieved performance
levels that were was not significantly worse than the best approach on 10 out
of 12 scenarios. The geometric average speedup was 11.89 for DNN and 10.90
for pairwise voting, respectively.10 In contrast, on one processing unit, DNN
performed best on only 3 scenarios and pairwise voting on 9 scenarios. We note
that performance differences between the approaches decreased as the number
of processing units increased: all approaches got closer to the optimal speedup
achieved when running all candidate algorithms in parallel.

Overall, our approaches and also the VBS do not scale as well on some of the
SAT scenarios as they do on the other scenarios (e.g., the maximal VBS speedup
is 95.6 on QBF-2011 but only 12.1 on SAT12-RAND). We speculate that this is

10 We note that we have to use a geometric average instead of an arithmetic average,
because we aggregate over speedup factors. This can be seen when considering a case
with speedups of 2 and 0.5, where the arithmetic average gives a misleading 1.25.
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Fig. 2: Heatmap for PAR10 speedups (wallclock) against sequential SB on 4 pro-
cessing units. A value is printed in bold-face if a statistical test (i.e., permutation
test with 100 000 and α = 0.05) cannot find evidence that it is significantly lower
than that of the best approach for a given number of threads. The last row shows
how often an approach was en par with the best.

due to (i) the relatively large number of SAT solvers (which makes it harder to
perform as well as the VBS ) and (ii) the relatively low performance correlation
between some of those solvers.

As can be seen in Figure 2, using pre-solving schedules improved the per-
formance on 4 out of our 5 approaches on 4 processing units. Surprisingly, the
distance-based nearest neighbor approach (DNN) performed slightly better with-
out pre-solving schedules, which we believe may be caused by over-fitting to the
training data.

Comparison with other Systems While the previous experiment fixed
all design decisions except the selection strategy, we now compare the results
for our two best results (DNN and pairwise-voting) with three other strategies:
SATzilla’11-like, a variant of our pairwise-voting approach in which we restrict
the number of presolvers and their time limit to resemble more closely the
strategy used in SATzilla 2011 [32]; the aspeed system, which does not perform
per-instance selection, but produces static parallel schedules and is used for
pre-solver scheduling in claspfolio 2 ; and the ISAC system, for which we have
written a converter from the ASlib format into its native input format. Since
ISAC determines its cross-validation folds internally and only outputs a single
performance number, we cannot perform statistical tests for this experiment and
only report the number of times each method performed best, as well as the
methods’ (geometric) mean speedups.

Figure 3 shows the performance of these systems on 1 and 4 processing units.
In the sequential case, SATzilla’11-like performed best overall (best on 5 of
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Fig. 3: Comparison of parallelization approaches of different algorithm selection
mechanisms on 1 and 4 processing units; we can’t assess statistical difference
since ISAC only outputs a single performance value.

our 12 benchmarks; average speedup 3.80), followed by pairwise voting (best
on 3 benchmarks; average speedup of 3.49), and aspeed (best on 4 benchmarks;
average speedup 2.34). Using 4 processing units, while SATzilla’11-like still
performed best (best on 5 benchmarks; average speedup 12.27), it was now closely
followed by the other two approaches: DNN (also best on 5 benchmarks, average
speedup 11.89) and ISAC (best on 4 benchmarks, average speedup 10.72).

We conclude that, while SATzilla’11-like yields stable performance, the
performance of different methods scales differently as the number of processing
units grows. We also note that, going up to 4 processing units, the best average
speedups obtained were roughly linear in the number of units. While ISAC
should not be used with more than 4 processing units (due to its exponential
time requirements in the number of units), Table 2 shows that our methods
(especially DNN) even improved further based on 8 processing units, without
increasing the effort to train or use them.

6 Conclusions

Motivated by the increasing importance of hardware parallelism, in this work, we
considered the problem of selecting a parallel portfolio of solvers based on features
of a problem instance to be solved. In particular, we investigated generic ways
of extending well-known sequential per-instance algorithm selection methods
to produce parallel portfolios. Since current algorithm selectors do not learn or
assess per-instance correlation in the performance of candidate solvers, we simply
use the scoring (or ranking) function underlying all algorithm selectors to select
the n algorithms scored best for a parallel portfolio. A future research goal would



be to develop a method to consider the per-instance performance correlation
between candidate solvers, which should permit the construction of even better
per-instance parallel portfolios.

Our extensive empirical study demonstrated that all methods we considered
performed quite well on the large range of scenarios from the algorithm selection
library, with speedups from 2.6 to 93.7 on 4 processing units in comparison to
running only the single best available algorithm sequentially. Overall, we found
our distance-based nearest neighbor (DNN) and pairwise-voting approaches to
perform better than other approaches.

However, as for any algorithm selection approach, the performance of our
parallel portfolio selectors is bounded by that of an oracle selector, i.e., a perfect
algorithm selector that always selects the single best algorithm for a given
instance. We see two ways to overcome this obstacle, (i) use of per-instance
algorithm configuration [15, 30] to improve the performance of the candidate set
of algorithms and hence of the oracle; and (ii) to permit communication between
the algorithms in the parallel portfolio (e.g., clause sharing between SAT solvers).
Both avenues can potentially be pursued by extending the techniques investigated
here.
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