
An Empirical Study of
Per-Instance Algorithm Scheduling

Marius Lindauer, Rolf-David Bergdoll, and Frank Hutter

University of Freiburg

Abstract. Algorithm selection is a prominent approach to improve a
system’s performance by selecting a well-performing algorithm from
a portfolio for an instance at hand. One extension of the traditional
algorithm selection problem is to not only select one single algorithm but
a schedule of algorithms to increase robustness. Some approaches exist for
solving this problem of selecting schedules on a per-instance basis (e.g.,
the Sunny and 3S systems), but to date, a fair and thorough comparison
of these is missing. In this work, we implement Sunny ’s approach and
dynamic schedules inspired by 3S in the flexible algorithm selection
framework flexfolio to use the same code base for a fair comparison.
Based on the algorithm selection library (ASlib), we perform the first
thorough empirical study on the strengths and weaknesses of per-instance
algorithm schedules. We observe that on some domains it is crucial to
use a training phase to limit the maximal size of schedules and to select
the optimal neighborhood size of k-nearest-neighbor. By modifying our
implemented variants of the Sunny and 3S approaches in this way, we
achieve strong performance on many ASlib benchmarks and establish
new state-of-the-art performance on 3 scenarios.

Keywords: Algorithm Selection, Algorithm Schedules, Constraint Solv-
ing

1 Introduction

A common observation in many areas of AI (e.g., SAT or CSP solving) and
machine learning is that no single algorithm dominates the performance of
all others. To exploit this complementarity of algorithms, algorithm selection
systems [11, 6, 8] are used to select a well-performing algorithm for a new given
instance. Algorithm selectors, such as SATzilla [12] and 3S [7], demonstrated in
several SAT competitions that they can outperform pure SAT solvers by a large
margin (see, e.g., the results of the SAT Challenge 20121).

An open problem in algorithm selection is that the machine learning model
sometimes fails to select a well-performing algorithm, e.g., because of uninforma-
tive instance features. An extension of algorithm selection is to select a schedule
of multiple algorithms at least one of which performs well.

1 http://baldur.iti.kit.edu/SAT-Challenge-2012/

To date, a fair comparison of such algorithm schedule selectors is missing, since
every publication used another benchmark set and some implementations (e.g.,
3S) are not publicly available (because of license reasons). To study the strengths
and weaknesses of such schedulers in a fair manner, we implemented well known
algorithm schedule approaches (i.e., Sunny [1] and dynamic schedules inspired
by 3S [7]) in the flexible framework of flexfolio (the successor of claspfolio 2 [5])
and studied them on the algorithm selection library (ASlib [3]).

2 Per-Instance Algorithm Scheduling

Similar to the per-instance algorithm selection problem [11], the per-instance
algorithm scheduling problem is defined as follows:

Definition 1 (Per-Instance Algorithm Scheduling Problem). Given a set
of algorithms P, a set of instances I, a runtime cutoff κ, and a performance
metric m : Σ×I → R, the per-instance algorithm scheduling problem is to find a
mapping s : I → Σ from an instance π ∈ I to a (potentially unordered) algorithm
schedule σπ ∈ Σ where each algorithm gets a runtime budget σπ(A) between 0
and κ such that

∑
A∈P σπ(A) ≤ κ and

∑
π∈I m(s(π), π) will be minimized.

The algorithm scheduler aspeed [4] addresses this problem by using a static
algorithm schedule; i.e., aspeed applies the same schedule to all instances. The
schedule is optimized with an answer set programming [2] solver to obtain a
timeout-minimal schedule on the training instances. The scheduler aspeed either
uses a second optimization step to determine a well-performing ordering of the
algorithms or sorts the algorithms by their assigned times, in ascending order
(such that a wrongly selected solver does not waste too much time).

Systems such as 3S [7], SATzilla [12] and claspfolio 2 [5] combine static
algorithm schedules (also called pre-solving schedules) and classical algorithm
selection. All these systems run the schedule for a small fraction of the runtime
budget κ (e.g., 3S uses 10% of κ), and if this pre-solving schedule fails to solve the
given instance, they apply per-instance algorithm selection to run an algorithm
predicted to perform well. 3S and claspfolio 2 use mixed integer programming
and answer set programming solvers, respectively, to obtain a timeout-minimal
pre-solving schedule. SATzilla uses a grid search to obtain a pre-solving schedule
that optimizes the performance of the entire system.

The algorithm scheduler Sunny [1] determines the schedule for a new instance
π by first determining the set of k training instances Ik closest to π in instance
feature space, and then assigns each algorithm a runtime proportional to the
number of instances in Ik it solved. The algorithms are sorted by their average
PAR10 scores on Ik, in ascending order (which corresponds to running the
algorithm with the best expected performance first).

3 Instance-specific Aspeed (ISA)

Kadioglu et al. [7] proposed a variant of 3S that uses per-instance algorithm
schedules instead of a fixed split between static pre-solving schedule and algorithm

selection. In order to evaluate the potential of per-instance timeout-optimized
scheduling, we developed the scheduler ISA, short for instance-specific aspeed.
Inspired by Kadioglu et al. [7], our implementation uses k-nearest neighbor
(k-NN) to identify the set Ik of training instances closest to a given instance π
and then applies aspeed to obtain a timeout-minimal schedule for them.

During offline training, we have to determine a promising value for the
neighborhood size k. In our experiments, we evaluated different k values between
1 and 40 by running cross-validation on the training data and stored the best
performing value to use online. We chose this small upper bound for k to ensure
a feasible runtime of the scheduler2 (in our experiments less than 1 second).
Furthermore, to optimize the runtime of the scheduler, we reduced the set
of training instances, omitting all instances that were either solved by every
algorithm or solved by none within the cutoff time.

For each new instance, ISA first computes the k nearest neighbor instances
from the reduced training set. This instance set is passed to aspeed [4], which
returns a timeout-minimal unordered schedule for the neighbor set. The schedule
is finally aligned by sorting the time slots in ascending order.

4 Trained Sunny (TSunny)

To offer a form of scheduling with less overhead in the online stage than ISA, we
implemented a modified version of Sunny [1] by adding a training phase. For a
new problem instance Sunny first selects a subset of k training instances Ik using
k-NN. Then time slots are assigned to each candidate algorithm: Each solver gets
one slot for each instance of Ik it can solve within the given time. Additionally,
a designated backup solver gets one slot for each instance of Ik that cannot be
solved by any of the algorithms. Having this slot assignment, the actual size of a
single time slot is computed by dividing the available time by the total number of
slots. Finally, the schedule is aligned by sorting the algorithms by their average
PAR10 score on Ik, thereby running the most promising solver first.

Preliminary experiments for our implementation of this algorithm produced
relatively poor results. Examining the schedules, we found that Sunny tends to
employ many algorithms per schedule, which we suspected to be a weakness.
Thus, we enhanced the algorithm by limiting the number of algorithms used in a
single schedule to a specified number λ.

Originally, Sunny is defined as lazy, i.e. not applying any training procedures
after the benchmark data is gathered. However, to obtain better values for our
new parameter λ, and also to improve the choice of the neighborhood size k, we
implemented a training process for Sunny . Similar to ISA, different configurations
for λ (range 1 to the total number of solvers) and k (range 1 to 100) are evaluated
by cross-validation on the training data. To distinguish this enhanced algorithm
from the original Sunny , we dubbed this trained version TSunny .

2 Optimizing a schedule is NP-hard; thus the size of the input set, defined by k, must
be kept small to make the process applicable during runtime.

5 Empirical Study

To compare the different algorithm scheduling approaches of ISA and Sunny, we
implemented them in the flexible algorithm selection framework flexfolio3 and
compared them to various other systems: The static algorithm scheduling system
aspeed [4], the default configuration of flexfolio (which is similar to SATzilla [12]
and claspfolio 2 [5] and includes a static-presolving schedule), as well as the
per-instance algorithm selector AutoFolio [9] (an automatically-configured version
of flexfolio without consideration of per-instance algorithm schedules). If not
mentioned otherwise, we used the default parameter values of flexfolio. The
comparison is based on the algorithm selection library (ASlib [3]), which is
specifically designed to fairly measure the performance of algorithm selection
systems. Version 1.0 of ASlib consists of 13 scenarios from a wide range of different
domains (SAT, MAXSAT, CSP, QBF, ASP and operations research).

flexfolio AutoFolio aspeed Sunny TSunny ISA

ASP-POTASSCO 0.78∗ 0.80∗ 0.34 0.69 0.81∗ 0.72
CSP-2010 0.80∗ 0.75∗ 0.05 0.68 0.77∗ 0.74∗

MAXSAT12-PMS 0.67 0.90∗ 0.65 0.87 0.93∗ 0.94∗

PREMAR-2013 0.70 0.74∗ 0.74∗ 0.71 0.62 0.78∗

PROTEUS-2014 0.82 0.87 0.87 0.88 0.94∗ 0.91
QBF-2011 0.90 0.91 0.80 0.90 0.94∗ 0.92
SAT11-HAND 0.73∗ 0.71∗ 0.74∗ 0.54 0.52 0.69∗

SAT11-INDU 0.29∗ 0.36∗ 0.06 0.19 0.37∗ 0.43∗

SAT11-RAND 0.93∗ 0.95∗ 0.80 0.59 0.87 0.95∗

SAT12-ALL 0.69∗ 0.69∗ 0.10 0.58 0.69∗ 0.71∗

SAT12-HAND 0.68 0.71 0.46 0.57 0.72 0.78∗

SAT12-INDU 0.39 0.46∗ −0.22 0.01 0.53∗ 0.54∗

SAT12-RAND 0.17 0.24∗ −0.28 −0.14 0.32∗ 0.12

Average 0.66 0.7 0.39 0.54 0.69 0.71
Equal to Best 6 10 2 0 9 9

Table 1: Gap metric on PAR10: 1.0 corresponds to a perfect oracle score and
0.0 corresponds to the single best score. The best score for each scenario is
highlighted with bold face and all system performances have a star that are not
significantly worse than the best system (permutation test with 100 000 random
permutations and α = 0.05; “Equal to Best”). All systems are implemented in
flexfolio, except Sunny which is the original version.

Table 1 shows the performance of the systems as the fraction of the gap closed
between the static single best algorithm and the oracle (i.e., the performance of

3 The source code and all benchmark data are available at http://www.ml4aad.org/

algorithm-selection/flexfolio/.

an optimal algorithm selector), using performance metric PAR104. As expected,
the static schedules of aspeed performed worse on average (except on SAT11-
HAND, where – as observed previously [4] – aspeed performed best). Sunny
performed better than aspeed but still not as well as flexfolio.5 The trained Sunny
version, TSunny , performed better than Sunny and even better than flexfolio,
but slightly worse than AutoFolio. On average, ISA was the best system with
a score of 0.71, but it was only amongst the best systems on 9/13 scenarios.
AutoFolio was more robust, being amongst the best systems on 10/13 scenarios,
but it had a slightly worse average (with a score of 0.7). We also note that
training ISA was much cheaper (only some CPU hours for each scenario) than
AutoFolio, for which we spent several CPU weeks per scenario to obtain a similar
performance. According to the on-going evaluation on ASlib, ISA establishes new
state-of-the-art performance on PREMAR-2013 (short for PREMARSHALLING-
ASTAR-2013) and TSunny on PROTEUS-2014 and QBF-2011.

Table 2 gives more insights into our systems’ performance. It also includes
our implemented version of Sunny without training, dubbed Sunny ’. Sunny (and
also Sunny ’) sets the neighborhood size k as the square root of the number of
instances, whereas TSunny optimizes k on the training instances. The reason
for TSunny ’s better performance in comparison to Sunny is probably its much
smaller values for k on all scenarios except on SAT12-RAND. Also TSunny ’s
average schedule size was smaller on nearly all scenarios (except CSP-2010).

Comparing the static aspeed and the instance-specific aspeed (ISA), the
average schedule size of aspeed is rather large since aspeed has to compute a
single static schedule that is robust across all training instances and not only
on a small subset. Surprisingly, the values of k for ISA and TSunny differ a lot,
indicating that the best value of k depends on the scheduling strategy.

6 Conclusion and Discussion

We showed that per-instance algorithm scheduling systems can perform as well
as algorithm selectors and even establish new state-of-the-art performance on 3
scenarios of the algorithm selection library [3]. Additionally, we found that the
performance of the algorithm schedules strongly depends on the adjustment of
their parameters for each scenario, here the neighborhood size of the k-nearest
neighbor and the maximal size of the schedules.

In our experiments we did not tune all possible parameters of Sunny and ISA
in the flexible flexfolio framework; e.g., we fixed the pre-processing strategy of
the instance features. Therefore, a future extension of this line of work would
be to extend the search space of the automatically-configured algorithm selector
AutoFolio [9] to also cover per-instance algorithm schedules. Another extension
could be to allow communication between the algorithms in the schedule [10].

4 PAR10 is the penalized average runtime where timeouts are counted as 10 times the
runtime cutoff.

5 We note that SATzilla also has an average gap score of 0.66 according to the on-going
evaluation on ASlib (see www.aslib.net).

aspeed ISA Sunny ’ TSunny
∅|σ| ∅suc k ∅|σ| ∅suc k ∅|σ| ∅suc k ∅|σ| ∅suc

ASP-POTASSCO 5.9 1.96 14.4 1.6 1.07 34.0 10.7 1.15 19.6 1.0 1.01
CSP-2010 2.0 1.2 5.8 1.1 1.0 43.0 1.9 1.01 12.8 1.9 1.0
MAXSAT12-PMS 3.0 1.98 7.3 1.2 1.02 28.0 5.4 1.04 6.4 3.0 1.01
PREMAR-2013 4.0 1.75 32.6 2.3 1.3 22.0 4.0 1.22 9.0 3.6 1.21
PROTEUS-2014 18.3 7.27 30.6 3.2 1.41 60.0 13.9 1.77 26.6 12.5 1.5
QBF-2011 4.9 2.2 27.8 1.9 1.26 35.0 4.5 1.1 14.1 3.3 1.06
SAT11-HAND 5.9 2.96 27.8 3.1 1.92 16.0 13.5 1.6 10.2 1.7 1.02
SAT11-INDU 4.6 2.82 3.8 1.3 1.03 16.0 16.5 1.55 4.2 1.4 1.02
SAT11-RAND 3.8 1.94 14.4 1.8 1.13 23.0 7.8 1.04 18.3 1.5 1.02
SAT12-ALL 12.6 5.24 8.8 1.6 1.12 38.0 24.4 1.72 4.2 1.0 1.0
SAT12-HAND 10.9 5.45 4.8 1.5 1.09 26.0 26.2 1.68 4.6 1.0 1.01
SAT12-INDU 6.2 3.64 6.1 1.2 1.04 32.0 22.5 1.75 4.3 1.0 1.0
SAT12-RAND 5.2 2.27 18.3 1.8 1.07 35.0 15.7 1.12 67.2 1.0 1.0

Table 2: Statistics of schedules: neighborhood size k, average size ∅|σ| of schedules,
average position ∅suc of successful solver in schedule for our systems aspeed ,
ISA, Sunny ’ (a reimplementation of the lazy version of Sunny), and TSunny (the
non-lazy trained version of Sunny ’)

References

1. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY: a lazy portfolio approach for
constraint solving. TPLP 14(4-5), 509–524 (2014)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

3. Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Frechétte, A.,
Hoos, H., Hutter, F., Leyton-Brown, K., Tierney, K., Vanschoren, J.: ASlib: A
benchmark library for algorithm selection. AIJ (2016), to appear

4. Hoos, H., Kaminski, R., Lindauer, M., Schaub, T.: aspeed: Solver scheduling via
answer set programming. TPLP 15, 117–142 (2015)

5. Hoos, H., Lindauer, M., Schaub, T.: claspfolio 2: Advances in algorithm selection
for answer set programming. TPLP 14, 569–585 (2014)

6. Huberman, B., Lukose, R., Hogg, T.: An economic approach to hard computational
problems. Science 275, 51–54 (1997)

7. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm
selection and scheduling. In: Proc. of CP’11. pp. 454–469 (2011)

8. Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey. AI
Magazine pp. 48–60 (2014)

9. Lindauer, M., Hoos, H., Hutter, F., Schaub, T.: Autofolio: An automatically config-
ured algorithm selector. Journal of Artificial Intelligence 53, 745–778 (2015)

10. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Boosting sequential
solver portfolios: Knowledge sharing and accuracy prediction. In: Proc. of LION’13.
pp. 153–167 (2013)

11. Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

12. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm
selection for SAT. JAIR 32, 565–606 (2008)

