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Abstract

To achieve peak performance, it is often necessary to adjust
the parameters of a given algorithm to the class of prob-
lem instances to be solved; this is known to be the case
for popular solvers for a broad range of AI problems, in-
cluding AI planning, propositional satisfiability (SAT) and
answer set programming (ASP). To avoid tedious and of-
ten highly sub-optimal manual tuning of such parameters
by means of ad-hoc methods, general-purpose algorithm
configuration procedures can be used to automatically find
performance-optimizing parameter settings. While impres-
sive performance gains are often achieved in this manner,
additional, potentially costly parameter importance analysis
is required to gain insights into what parameter changes are
most responsible for those improvements. Here, we show
how the running time cost of ablation analysis, a well-
known general-purpose approach for assessing parameter im-
portance, can be reduced substantially by using regression
models of algorithm performance constructed from data col-
lected during the configuration process. In our experiments,
we demonstrate speed-up factors between 33 and 14 727 for
ablation analysis on various configuration scenarios from AI
planning, SAT, ASP and mixed integer programming (MIP).

Introduction
General-purpose algorithm configuration was used a lot in
the last decade to substantially improve the performance
of algorithms by optimizing their parameter configurations
for the class of problem instances to be solved. Exam-
ples include the configuration of state-of-the-art solvers
from propositional satisfiability solving (Hutter et al. 2017),
AI planning (Fawcett et al. 2011) and mixed integer-
programming (Hutter, Hoos, and Leyton-Brown 2010).

Most users of algorithm configuration procedures are not
only interested in obtaining a well-performing parameter
configuration, but they also want to understand why the per-
formance of their algorithm improved over another configu-
ration. To this end, different techniques have been proposed
that score parameters based on their importance (Hutter,
Hoos, and Leyton-Brown 2013; 2014; Siegmund et al. 2015;
Fawcett and Hoos 2016). A common observation for hard-
combinatorial problem solvers is that although automated
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algorithm configurators change nearly all parameters (i.e.,
between tens and hundreds of parameters, depending on the
algorithm), as few as 1 to 3 parameter changes can be re-
sponsible for nearly all of the performance improvement.

To determine these important parameter changes between
two configurations, Fawcett and Hoos (2016) proposed an
ablation analysis procedure. However, this analysis is com-
putationally quite expensive and often takes many days of
CPU time, since it requires further algorithm runs to validate
parameter importance. Here, we propose to use a model-
based surrogate instead of expensive algorithm runs to dra-
matically speed up this ablation analysis.

During algorithm configuration, large amounts of perfor-
mance data are generated by assessing the performance of
many parameter configurations on different instances. We
use these data to train a regression model to predict the
performance (e.g., running time) of a parameter configura-
tion on a given instance. Such models are called empirical
performance models (EPMs; Leyton-Brown, Nudelman, and
Shoham; Hutter et al. 2009; 2014b). By using these cheap-
to-evaluate EPMs as a surrogate, we show in extensive ex-
periments on prominent benchmarks from SAT, MIP, ASP
and AI Planning that we can speed up ablation analysis by
up to 4 orders of magnitude.

We fully integrated our surrogate-based ablation proce-
dure into the prominent, general-purpose algorithm con-
figuration system SMAC (Hutter, Hoos, and Leyton-Brown
2011b)1.

Related Work
Hutter et al. (2014b) studied different approaches to train
empirical performance models (EPMs). They showed that
EPMs can be effectively used to predict the performance of
algorithm configurations on a set of problem instances, in
particular for NP-hard problems, such as MIP, SAT and
AI planning. EPMs are often used in modern algorithm
configurators, such as SMAC (Hutter, Hoos, and Leyton-
Brown 2011b) and GGA++ (Ansótegui et al. 2015), to guide
the search to promising areas of the configuration space;
a simplified version without consideration of instances is
also used in hyperparameter optimization tools for machine
learning algorithms based on Bayesian optimization (e.g.,

1In version 3; see http://www.ml4aad.org/smac/



i ∈ {1, . . . , |∆ (θsource, θtarget)|}

Initialize
θ0 ← θsource

Select best parameter changes
δi ∈ arg minδ∈∆(θi−1,θtarget)

∑
π∈Πm(θi−1 [δ] , π)

Update current configuration
θi ← θi−1[δi]

Return parameter changes
δ1, . . . , δn with ablation path
configurations θ1, θ2, . . . , θn

Figure 1: Ablation Analysis

Shahriari et al. 2016). Before EPMs were used in algorithm
configuration, they were already a key technique in per-
instance algorithm selection (see, e.g., Rice 1976, Kotthoff
2014); furthermore, they have recently been used to define
surrogate benchmarks for efficient benchmarking of hyper-
parameter optimization tools (Eggensperger et al. 2015).

Other approaches for parameter importance analysis also
make use of EPMs; an example is forward selection to
determine which algorithm parameters are the most use-
ful features to train an EPM that predicts the algorithm’s
performance (Hutter, Hoos, and Leyton-Brown 2013). A
related approach is fANOVA (Hutter, Hoos, and Leyton-
Brown 2014), which uses an EPM (based on random
forests (Breiman 2001)) to analyze how much of the per-
formance variance in the configuration space is explained
by single parameters or combinations of few parameters.
Both of these approaches follow a similar idea as used in
this paper: during algorithm configuration, performance data
is gathered on different parameter configurations and in-
stances, and this data is later used to train an EPM, with-
out any additional expensive algorithm runs. An exemplary
implementation of this workflow is SpySMAC (Falkner, Lin-
dauer, and Hutter 2015), an algorithm configuration toolkit
supporting extensive post-configuration analysis. However,
both approaches differ from ours in that they are limited to
a global view of the configuration space and hence fail to
capture important local effects responsible for the efficacy
of top-performing configurations of a given algorithm. Fur-
thermore, we are not aware of any work showing that such
EPMs provide accurate enough predictions for local effects.

Background: Ablation
Ablation analysis is a recent approach that aims to answer
more localized parameter importance questions. Fawcett and
Hoos (2016) showed that algorithm performance improve-
ments between two parameter configurations can often be
explained by only a few parameter changes (typically at
most 3); for example, a 473-fold performance speedup of
the SAT solver Spear (Babić and Hutter 2007) on software
verification instances was almost completely (i.e., 99.7%)
explained by a single parameter change.

We now describe ablation analysis on a high level.
Given a parameterised algorithm A with n configurable pa-
rameters defining a configuration space Θ, along with a
source configuration θsource and target configuration θtarget
(e.g., a user-defined default configuration and one obtained
using automated configuration), and a performance met-
ric m (e.g., running time or solution quality), ablation
analysis first computes the parameter setting differences
∆ (θsource, θtarget) between the source and target configura-
tions. Next, given a set Π of benchmark instances, an abla-
tion path θsource, θ1, θ2, . . . , θtarget is iteratively constructed.
In each iteration i with previous ablation path configura-
tion θi−1, we consider all remaining parameter changes
δ ∈ ∆ (θi−1, θtarget) and apply the change to the previous
ablation path configuration θi−1 [δ]. Each parameter change
δ is a modification of one parameter from its value in θi−1 to
its value in θtarget, along with any other parameter modifica-
tions that may be necessary due to conditionality constraints
in Θ. The next configuration on the ablation path θi is the
candidate θi−1 [δ] with the best performancem on the set Π.
This performance may be directly measured by performing
runs ofA, or approximated for efficiency reasons. A concise
summary of ablation analysis is given in Figure 1.

Fawcett and Hoos (2016) introduced two variants of ab-
lation analysis. The first, full ablation analysis, performs a
full empirical analysis for each candidate configuration θ
in a given ablation iteration, by running A [θ] on all in-
stances π ∈ Π. This can be computationally very expen-
sive and, given that many configurations in each iteration
perform poorly, quite wasteful of those computational re-
sources. The second approach, racing-ablation analysis, re-
duces the computational burden by applying the statisti-
cal techniques introduced in F-race (Birattari et al. 2002;
López-Ibáñez et al. 2016) to eliminate some candidate con-
figurations as soon as there is enough statistical evidence
on an iteratively increased subset of instances that they are
outperformed by at least one other configuration. This pro-
cedure efficiently rejects poorly-performing candidate con-
figurations after as few as 5 runs, dramatically reducing the
computational costs of ablation analysis. However, there is a
risk associated with these substantial savings: if the first in-
stances considered favor a different parameter change than
the entire set of instances would, then racing-ablation can
fail to identify the best ablation path (we will show an ex-
ample of this in our experiments). Also, if several candidate
configurations in an ablation iteration have very similar per-
formance (or remaining candidates have no effect on perfor-
mance), no benefit is gained from racing.

We note that ablation has several advantages and disad-
vantages compared to the EPM-based methods of forward
selection and fANOVA discussed in the related work section.
The latter two produce parameter importance results based
on a global view of the entire configuration space of the al-
gorithm under consideration; since this can contain several
regions of similarly-high performance, this global view may
miss characteristics that are (only) important in the regions
close to the optimal configuration. In contrast, the locality
of ablation has the benefit of quantifying how much can be
gained by simply changing a few parameters from an algo-



rithm’s tried-and-tested default configuration θsource. How-
ever, ablation is limited to analyzing parameters that differ
between θsource and θtarget. Due to its iterative nature, it can
also only partially identify interactions between parameters
(e.g., by using a forward and backward pass of ablation).
Therefore, ablation often yields results that complement the
global analysis of forward selection and fANOVA. Finally, a
key issue of ablation that complicates fast posthoc analyses
is its reliance on new expensive algorithm runs; in this paper,
we remove this issue by introducing an EPM-based ablation
variant that does not require any new algorithm runs.

Efficient Ablation via Surrogates
As previously mentioned, ablation analysis is an expensive
process due to the algorithm runs that have to be performed
to gather enough empirical evidence to compare parameter
configurations. For example, Fawcett and Hoos (2016) re-
ported a running time of 5 CPU days for full ablation analy-
sis and 1 CPU day for racing-ablation for the Spear example
on software verification instances mentioned above. We note
that this is only a moderately hard example with a cutoff of
300 seconds for each run of Spear.

To use ablation analysis in situations where CPU time is
limited, we propose to accelerate the process of ablation by
replacing expensive algorithm runs with cheap predictions
obtained from a model-based surrogate. When selecting the
best parameter changes δi (see Figure 1, second block), we
replace the empirical performance m : Θ×Π→ R by a
predicted performance m̂ : Θ×Π→ R for configurations
θ ∈ Θ and instances π ∈ Π using an EPM (Hutter et al.
2014b). Since typical machine learning models can produce
predictions within fractions of a second, once an EPM is
trained, our approach computes an ablation path virtually
instantaneously. (See Table 3 in the last section for a com-
parison of its running time with racing.)

The application of our surrogate-ablation requires: i) In-
stance features as numerical representations of instances;
these are available for many domains (Xu et al. 2008; 2011;
Gebser et al. 2011; Fawcett et al. 2014) or can be generated
in a domain-independent fashion (Loreggia et al. 2016); ii)
Gathering sufficient performance data to train an EPM; iii)
Obtaining reasonably accurate predictions from the EPM.

To address the latter two requirements, we discuss two
points in the following subsections: i) How to construct
EPMs that serve as good surrogates for ablation analysis,
and ii) How to deal with uncertainty and prediction error in-
duced by the EPM.

Fitting an Empirical Performance Model (EPM)
Our goal is to construct an EPM m̂ : Θ × Π → R
and to use its predictions as a surrogate for expensive real
algorithm runs. Running time is a common performance
metric to optimize in algorithm configuration (in particu-
lar for solving hard combinatorial problems), and Hutter et
al. (2014b) showed that random forests are currently the best
known machine learning model for this task, with better
results obtained when predicting log-transformed running
time. Therefore, we follow this approach.

We now discuss how to efficiently gather data for the
training of the EPM and how to compute accurate predic-
tions of the commonly used performance metric of penalized
average runtime.

Gathering Training Data As discussed above, parameter
importance analysis is an important tool after applying al-
gorithm configuration, since algorithm configuration tools
often do not reveal which parameter changes lead to im-
proved performance. Thus, we expect that our ablation anal-
ysis will mainly be used after algorithm configuration. In our
surrogate-ablation workflow we reuse all algorithm perfor-
mance data collected during configuration. These data con-
sist of performance evaluations m (θ, π) of different config-
urations θ and instances π.

Since algorithm configuration procedures focus search in
high-performance regions of the configuration space and
thus gather more data there, these data are well suited to train
our EPM. To apply surrogate-ablation analysis, we need an
EPM that predicts well in these high-performance regions,
because target configurations will likely stem from such re-
gions, and we want to know which parameters have high
impact on the performance within such regions.

An issue with the data from algorithm configuration pro-
cedures is that the data from algorithm runs that were pre-
maturely terminated is right-censored, i.e., we only ob-
tain a lower-bound on the true performance for the respec-
tive runs. This is a result of adaptive capping as used in
ParamILS (Hutter et al. 2009) and SMAC (Hutter, Hoos, and
Leyton-Brown 2011b): If the performance metric to be op-
timized is running time, the configurator does not require
algorithm runs to use the entire running time cutoff when
deciding which of two configurations perform better. There-
fore we need to impute these censored data, e.g., by the
methods of Schmee and Hahn (1979) or Hutter, Hoos, and
Leyton-Brown (2011a).

Predicting Expected Penalized Running Time Using a
running time cutoff for the target algorithm ensures that
(i) an algorithm does not run forever, and that (ii) poorly-
performing configurations do not waste too much time. Al-
gorithm configurators therefore do not directly optimize run-
ning time but a censored version of it, known as penalized
average running time (PARX). PARX penalizes each timed-
out or crashed run as X times the running time cutoff.

Using PARX as a performance metric for EPM predic-
tions is, however, not an easy task, because the EPM has
to predict a large jump in performance on the boundary be-
tween successful runs and timed-out runs. Since the EPM
(as all machine learning models) has some errors in its pre-
dictions, the prediction of a new pair of 〈θ, π〉 close to this
boundary could be on either side of the boundary. Therefore,
mean predictions (e.g, of a random forest) can have a large
error compared to the true performance value if the predic-
tion is on the wrong side of the boundary.

To cope with this problem, we propose to predict expected
penalized running time (EPARX) instead of penalized run-
ning time. The idea is that the prediction from our EPM is
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Figure 2: Visualization of expected PAR2 with κ = 300,
black being the normal distribution N (µ = 250, σ = 50)
and dashed blue being the corresponding truncated normal
distribution N≤κ. The expected PAR2 would be 293.

not a single value for the running time, but a distribution
over the predicted running time. E.g., a regression random
forest (Breiman 2001) can be adapted to return a mean pre-
diction and a variance estimate of a normal distribution (Hut-
ter et al. 2014b). To predict EPARX for a distribution with
probability density p(t), we predict the expected running
time below κ and the penalized score of X · κ weighted by
the probability to be above κ as∫ κ

0

t · p(t)dt+

∫ ∞
κ

X · κ · p(t)dt. (1)

If we approximate the distribution p(t) by a normal dis-
tribution (e.g., using a random forest or a Gaussian process),
we can solve Equation 1 by:

µ≤κ · Φ(κ) +X · κ · (1− Φ(κ)), (2)

where κ is the running time limit, µ the predicted mean per-
formance, σ2 the predicted variance, Φ the CDF of a normal
distributionN (µ, σ2) of the predicted mean µ and predicted
variance σ2, and µ≤κ the mean of the truncated normal dis-
tribution N (µ, σ2)≤κ.

Figure 2 illustrates expected penalized average running
time on an artificial example with penalization ofX = 2 and
a running time cutoff κ = 300. The black curve is the normal
distribution p(t) for a given mean prediction µ = 250 and
predicted standard deviation σ = 50. The probability of not
being a timeout is Φ(κ) = 0.84, the mean of the truncated
normal distribution is µ≤κ = 235.62. Using Equation 2, the
expected penalized average running time is 293.43 in con-
trast to the predicted penalized average running time of 250.

Handling Uncertainty of EPMs
In contrast to the original ablation method, our method is
much faster, but—like ablation—it also comes with the risk
of wrong predictions. As shown by Hutter et al. (2014b) and
Eggensperger et al. (2015), random forest models are well
suited as EPMs, but we cannot guarantee that their predic-
tions are always accurate enough.

Possible reasons EPMs having large errors include (i) un-
informative instance features that do not permit us to dis-
criminate well between instances; (ii) an insufficient amount
of training data, e.g., due to a short algorithm configuration

run that evaluated only few parameter configurations within
a large configuration space; (iii) failure of the training data
to capture the part of the configuration space spanned by the
source and target configuration for ablation.

This can obviously lead to inaccurate ablation results; to
quantify this risk, we need to assess the error made by the
EPM used for surrogate-ablation. An approach to deal with
the uncertainty of our random forests as EPMs is to use their
variance predictions to indicate how certain they are about
the predicted performance of a changed parameter. In con-
trast to the original ablation path, which can be visualized as
a single curve in the space of parameter modifications and
performance, in the following, we also compute the uncer-
tainty in the predicted performance of each modification.

Experimental Study
To compare full ablation, racing-ablation and surrogate-
ablation, we ran experiments on six algorithm configuration
benchmarks from propositional satisfiability (SAT), mixed
integer programming (MIP), answer set programming (ASP)
and AI planning.

Setup
Our surrogate-ablation implementation in Python is freely
available2 and fully integrated into the algorithm configu-
ration system SMAC. All experiments were executed on a
compute cluster equipped with two Intel Xeon E5-2650v2
8-core CPUs, 20 MB L2 cache and 64 GB of (shared) RAM
per node, running Ubuntu 14.04 LTS 64 bit.

As configuration benchmarks, we used the following six
benchmarks from the algorithm configuration literature as
implemented in AClib (Hutter et al. 2014a)3; details for
these benchmarks are shown in Table 1:

SPEAR-QCP and SPEAR-SWV Spear (Babić and Hutter
2007) is a tree-search SAT solver. We configured Spear
on quasigroup completion instances (QCP) (Gomes and
Selman 1997) and software verification instances (Babić
and Hu 2007), following Hutter et al. (2009).

CPLEX-RCW2 CPLEX is one of the most widely used
MIP solvers. We configured CPLEX on the Red-cockaded
Woodpecker (RCW2) instance set (Ahmadizadeh et al.
2010), following Hutter, Hoos, and Leyton-Brown (2010).

CLASP-WS Clasp (Gebser, Kaufmann, and Schaub 2012)
is a state-of-the-art solver for ASP. We configured Clasp
on weighted-sequence problems (WS) for database query
optimization (Lierler et al. 2012), following Silverthorn,
Lierler, and Schneider (2012).

LPG-SATELLITE and LPG-DEPOTS LPG (Gerevini,
Saetti, and Serina 2003) is a local-search AI planning
solver. We optimized LPG on the two domains DEPOTS
and SATELLITE, following Fawcett and Hoos (2016).

For each benchmark, we performed configuration and ab-
lation experiments. For the configuration part, we used 16
independent SMAC runs and picked the configuration with

2http://www.ml4aad.org/efficient-ablation/
3www.aclib.net



Benchmark #P κ #Inst. Budget #Data
[sec] Train/Test [h]

SPEAR-QCP 26 5 976/2000 80 200k
SPEAR-SWV 26 300 302/302 768 200k
CPLEX-RCW2 76 10 000 495/495 768 33k
CLASP-WS 99 900 240/240 1536 119k
LPG-SATELLITE 66 300 2000/2000 768 200k
LPG-DEPOTS 66 300 2000/2000 768 200k

Table 1: Overview of used configuration benchmarks from
AClib. #P is the number of parameters, κ is the running time
cutoff, #Inst is the number of instances in the training and
test set, Budget is the running time required to run SMAC 16
times, and #Data is the number of collected data points.

the best performance on the training instances as the abla-
tion target θtarget. The performance metric was penalized av-
erage running time with a commonly used penalization fac-
tor of X = 10 (PAR10). Then, to obtain a ground truth for
ablation, we ran a full ablation analysis using all training in-
stances. Following Fawcett and Hoos (2016), this used the
training instances to compute an ablation path from θsource
(the default parameter configuration) to θtarget and evaluated
this path on the test set.

We next compared racing-ablation and surrogate-ablation
against the ground truth obtained from the full analysis using
the same θsource and θtarget. Since full ablation is too expen-
sive for many real-world benchmarks, and racing-ablation
is currently the only computationally feasible method, we
show that surrogate-ablation yields similarly good results as
racing ablation, but does so much faster. In particular, while
racing-ablation (like full ablation) requires new algorithm
runs, surrogate-ablation only requires EPM predictions. In
racing, following Fawcett and Hoos (2016), we set the max-
imum number of rounds to 200. To train our EPMs, for
each benchmark, we used at most 200 000 performance data
points, because in our (not memory-optimized) implemen-
tation, using more data points exhausted memory of 8 GB
RAM. Since our goal is to run our surrogate-ablation analy-
sis on a typical office machine, using more than 8 GB RAM
would be unreasonable in this setting.

We will judge the similarity between each method’s ab-
lation path and the ground truth ablation paths by two met-
rics.4 Both of these are related to the importance score that
each modification receives for each path, i.e., the estimated
performance improvement. We define a modification as im-
portant in a path if it is part of a prefix of the path each mem-
ber of which has at least 5% performance improvement. Our
two metrics are then:
• The similarity between the set of parameter modifications

deemed important: We count true positives, false posi-
tives, and false negatives of racing-ablation and surrogate-
ablation w.r.t. to the important parameters in the ground
4We note that we cannot simply compute Spearman’s correla-

tion coefficients because we are mainly interested to identify the
most important parameters and we are not interested in the order of
the unimportant parameters.

TP/FP/FN Speedup
benchmark R S F R S

SPEAR-QCP 1/1/1 1/1/1 2.4 2.6 1.9
SPEAR-SWV 0/2/1 1/1/0 332.6 1.0 332.6
CPLEX-RCW2 1/0/0 1/1/0 1.2 1.2 1.2
CLASP-WS 0/0/1 0/5/1 1.9 0.4 0.4
LPG-DEPOTS 1/0/0 1/0/0 23.0 23.0 23.0
LPG-SATELLITE 2/0/0 1/1/1 2.9 2.9 2.4

Table 2: Comparing racing-ablation and surrogate-ablation
to a full ablation analysis (“F”). “R” corresponds to racing-
ablation evaluated on all test instances, “S” to surrogate-
ablation. “TP/FP/FN” shows the numbers of true positives,
false positive and false negatives wrt the set of the most im-
portant parameters compared to the ground truth. “Speedup”
shows the speedup explained after the first important param-
eter changes.

truth data. E.g., false positives refer to classifying unim-
portant parameters (w.r.t. the ground truth) as important.

• The speedup explained by changing the n first parameters,
where n is w.r.t. the number of important parameters in
the ground truth data. The n can be seen in Table 2 by
adding the numbers of true positives and false negatives.

Results
Table 2 shows that, overall, surrogate-ablation performs sim-
ilarly well as racing-ablation. Both methods correctly iden-
tified the most important parameters for most benchmarks,
with few false positives and false negatives. In particular,
surrogate-ablation explained the speedups caused by the im-
portant parameter changes well. Two of our six benchmarks
showed some unexpected characteristics, i.e., SPEAR-SWV
and CLASP-WS. On SPEAR-SWV, surrogate-ablation cor-
rectly identified the most important parameter change cor-
rectly and was able to explain a speedup of 332.6 between
the default configuration and the optimized parameter con-
figuration of Spear. However, SPEAR-SWV is an example
for the previously explained flaw of racing: racing-ablation
used an unrepresentative subset of instances in early itera-
tions of the racing and hence, wrongly eliminated the most
important parameter change. Since surrogate-ablation al-
ways reasons over the entire instance set, our new ablation
method is not affected by such heterogeneous instance sets.
On CLASP-WS, the training instances were also slightly
heterogeneous and furthermore not representative of the test
instances. Therefore, both ablation methods failed and even
full ablation was not able to find a reasonable ablation path
on the training set that generalizes well to the test instances.

To provide more detailed insight into our surrogate-
ablation method, Figure 3 shows the first 5 param-
eter modifications of our surrogate-ablation and the
ground truth. For LPG-SATELLITE, surrogate-ablation
correctly identified the most important parameter (cri-
intermediate levels). For the second-most im-

portant, the full ablation chose a combined change of
vicinato and hpar cut neighb due to conditional pa-



Figure 3: First five parameter changes in the ablation
paths of the ground truth and surrogate-ablation for LPG-
SATELLITE (left) and CPLEX-RCW2 (right). The grey
area around the surrogate-ablation path is the estimated per-
formance standard deviation.

rameters in the configuration space of LPG. Our surrogate-
ablation has not learned the interaction between these two
parameters and changed only vicinato. Although the
third parameter is already nearly unimportant, our abla-
tion method also found this one. For CPLEX-RCW2, the
surrogate identified the most important parameter correctly
(simplex dgradient). However, it scored the impor-
tance of this modification lower than the ground truth.

Across all benchmarks, we observed that the predicted
parameter importance scores along the surrogate-ablation
paths drop smoother than in the ground truth, i.e., surrogate-
ablation overestimated the importance of some parameters.
This is consistent with the data in Table 2, since it has less
false negatives than false positives. We believe that false pos-
itives are less severe in practice than false negatives because
missing an important parameter distracts users more than
looking into some more pretended important parameters.

Both figures also show the estimated standard deviation
of the surrogate-ablation to illustrate the uncertainty of the
parameter importance. The estimated standard deviation for
LPG-SATELLITE is much smaller than for CPLEX-RCW2.
Interestingly, the estimated standard deviation is nearly con-
stant across the changes for CPLEX-RCW2. For LPG-
SATELLITE, the EPM is much more certain at the source
configuration (i.e., the default configuration of LPG) and
more uncertain after the first parameter change. The reason
is that during configuration, we evaluated θsource and θtarget
on more instances than the configurations in the middle of
the ablation path.

Table 3 shows the running time of the different abla-
tion approaches. For surrogate-ablation, we counted only the
time to compute and validate the paths, but we did not in-
clude the time to gather the EPM training data or to train the
EPM. Since we used SMAC as an algorithm configurator,
which also fits an EPM to guide its search, we can simply
save the EPM to disk and reuse it later such that we do not
need to refit an EPM for the ablation analysis. Retraining

Full Racing Surro.
benchmark Train Test Train Test Train Test

SPEAR-QCP 921 78 91 68 4 0.75
SPEAR-SWV 853 44 316 71 1 0.20
CPLEX-RCW2 121 279 11 639 21 290 11 552 2 0.23
CLASP-WS 159 799 8 266 57 689 8 323 6 0.50
LPG-DEPOTS 30 556 1 023 366 1 060 10 0.80
LPG-SATELLITE 113 126 6 533 5 783 6 162 21 1.17

Table 3: Comparing based on required time [CPU min] to
do analysis. Train refers to the time required to compute the
ablation paths on the training instances and test refers to the
validation of the ablation paths on the test instances to derive
parameter importance scores.

the EPM would cost in our implementation on average 34
(±30) minutes, which is mostly due to the large amount of
training samples (see Table 1) and the imputation of right-
censored data. As expected, both original ablation methods
needed between hours and days to compute and evaluate ab-
lation paths, but our surrogate-ablation needed only a few
minutes, making it between 33 and 14 727 times faster than
racing-ablation.

Discussion
By using performance predictions instead of actual target al-
gorithm runs, our surrogate-ablation dramatically speeds up
ablation analysis, while producing qualitatively similar re-
sults to racing-ablation. Up to now, running ablation analysis
often required days or weeks of CPU time, and hence neces-
sitated the use of sizeable compute clusters. With surrogate-
ablation, comparable results are obtained within minutes on
a typical desktop machine, while avoiding the risk of obtain-
ing misleading results for heterogeneous instance sets that is
inherent to all racing-based methods.

Since surrogate-ablation depends on the prediction accu-
racy of the underlying empirical performance model, our
implementation provides uncertainty bounds in the ablation
path, based on which users can assess the accuracy of the
parameter importance information determined by ablation.

An open issue is handling of large amounts of data. Be-
cause of memory issues, we already had to subsample our
EPM training data. Since deep neural networks have shown
impressive results on big data, in the future we plan to study
such networks as EPMs. Another direction for EPMs would
be to use the random forest adaptation of GGA++ (Ansótegui
et al. 2015) to obtain better predictions in high-performance
regions. Furthermore, when applied to heterogeneous in-
stance sets, ablation could be combined with ISAC (Kadio-
glu et al. 2010).
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H.; Leyton-Brown, K.; and Stützle, T. 2014a. AClib: a bench-
mark library for algorithm configuration. In Proc. of LION’14.
Hutter, F.; Xu, L.; Hoos, H.; and Leyton-Brown, K. 2014b.
Algorithm runtime prediction: Methods and evaluation. AIJ
206:79–111.
Hutter, F.; Lindauer, M.; Balint, A.; Bayless, S.; Hoos, H. H.;
and Leyton-Brown, K. 2017. The configurable SAT solver
challenge (CSSC). AIJ 243:1–25.

Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2010. Automated
configuration of mixed integer programming solvers. In Proc.
of CPAIOR’10, 186–202.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2011a. Bayesian
optimization with censored response data. In BayesOpt work-
shop at NIPS’11.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2011b. Sequential
model-based optimization for general algorithm configuration.
In Proc. of LION’11, 507–523.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2013. Identifying
key algorithm parameters and instance features using forward
selection. In Proc. of LION’13. 364–381.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2014. An efficient
approach for assessing hyperparameter importance. In Proc. of
ICML’14, 754–762.
Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K. 2010.
ISAC - instance-specific algorithm configuration. In Proc. of
ECAI’10, 751–756.
Kotthoff, L. 2014. Algorithm selection for combinatorial search
problems: A survey. AI Magazine 48–60.
Leyton-Brown, K.; Nudelman, E.; and Shoham, Y. 2009. Em-
pirical hardness models: Methodology and a case study on com-
binatorial auctions. Journal of ACM 56(4).
Lierler, Y.; Smith, S.; Truszczynski, M.; and Westlund, A. 2012.
Weighted-sequence problem: ASP vs CASP and declarative vs
problem-oriented solving. In Proc. of PADL, 63–77.
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