A BLACKBOARD SYSTEM FOR DISTRIBUTED ANALYSIS OF IMAGE SEQUENCES

K. Welzb), C.-E. Liedtke!)

Abstract

The analysis of image sequences, which have been obtained by a TV camera from a natural scene, re-
quires in general a large number of different tasks. Under real-time conditions many of these tasks have
to be executed simultaneously. This paper proposes a multiprocessor architecture, which supports the
system requirements for such kind of image sequence analysis problems. Interprocess communication
and task distribution are realized with the blackboard principle. To study the system requirements of
amultiple task analysis system we have chosen, as an example, the automated recognition of traffic signs
from a moving car.

1. Introduction

Execution time for the analysis of natural image sequences depends on the complexity of the scene. The
more relevant objects the scene includes, the longer is the time needed for execution. Therefore, the analy-
sis of natural image sequences using sequential task execution is often not possible, when real-time oper-
ation is requested. Parallel processing is necessary to increase processing power and system reliability.
Increasing time requirements of an application problem should be compensated by a modular system
extension, without changing any application software. For this reason, the whole problem must be di-
vided into small independent subtasks, which can be distributed to the available processors /1/. Parallel
task execution requires the exchange and collection of data and execution results. Cooperation between
the parallel working processors is needed in order to increase reliability, availability, and performance
of the whole system /2/. Because of the uncertainty in interpreting natural image sequences, a pure top
down or bottom up strategy is not possible. The required mechanisms have to enable cooperation within
and between all levels of image analysis, i.e. the numeric and the symbolic processing level. Type and
number of tasks waiting to be executed at the same time depend on the content of the actual scene. These
tasks have to be allocated to the processors /2, 3, 4/. For application problems, where the types and num-
bers of tasks vary during execution, an automatic distribution of the tasks to the available processors
will be more efficient than static allocation, because it more effectively balances computation and com-
munication. By a dynamic distribution of processing power image processing tasks can be done with
a smaller set of processors.

In particular applications, like the navigation of vehicles in natural environments, the real time perform-
ance can be the most important criterion. Efficiency and cost effectiveness is important, but is not in
all cases of utmost concern. The primary intention of this project is to develop an architecture, which
permits real-time operation for a large range of image sequence analysis problems, based on multipro-

cessing. It is not the primary purpose to maximize processor efficiency.

) Institut fir Theoretische Nachrichtentechnik und Informationsverarbeitung,
Universitit Hannover, Appelstr. 9A, D-3000 Hannover 1, FRG

248 CAIP'91

2. A Blackboard for Parallel Image Analysis
2.1 Blackboard Principle

In a top down approach to sequence analysis, which is envisioned here, tasks have to be generated during
run time. These tasks must be allocated dynamically to the free processors. An advantage of an automatic
distribution strategy is a high flexibility in case of system extensions.

For task distribution we will use the blackboard principle which provides information about executable
tasks and processing results. Processors are able to write new tasks and results onto the blackboard.
Idling processors can read a new executable task from the blackboard. Processing results will be distrib-

uted via the blackboard.

2.2 Blackboard Structure

A blackboard entry specifies a task. Each task has a unique number. Tasks may have different types of
destination. A task with the destination attribute "broadcast” has to be executed by each processor. The
destination attribute "broadcast” is suitable for the distribution of data, which are important for each
processor, Having the destination attribute "any” a task may be executed by any processor. The destina-
tion attribute "definite” specifies that a task has to be executed on a definite processor or a definite set

of processors.

Each task has a priorify. A high priority guaranties that very important tasks or very complex tasks will
be processed first. Answer tasks will get a high priority, too, so that processing results will be returned
as quickly as possible. The blackboard is organized as a priority sorted waiting queue. When creating
a new blackboard entry, the creation time will be noticed. Priority will increase with increasing waiting
time. A dynamic priority avoids that tasks with low priority will never be executed, if there are tasks with

a higher priority generated permanently.

To differentiate between executable tasks, waiting tasks, and tasks containing processing results a black-
board entry includes a status field. The fype of a task specifies the algorithms to be executed. To achieve
a good computation balance each processor should be able to execute as many different tasks as possible.

A task entry has input or output parameters. The parameter field contains the length of the data block

and the data itself.

2.3 Blackboard Realization

In Shared Memory Systems a blackboard can be realized as a globally accessible data base. All medium-
and high-level processors have access to the blackboard. A disadvantage is the fact that a master proces-
sor is needed for blackboard administration. Access to the blackboard may become a bottleneck. For

large systems this central distribution strategy is not efficient.

CAIP91

Receive

Send

O_

Black-
board

Work

Fig. 1.

Processes on a Dynamic
Blackboard Processor

Since we are mainly interested in large multiprocessor sys-
tems (not supercomputers), to avoid a system bottleneck
only decentral schemes are considered. In loosely coupled
systems with message passing we have the possibility to
realize the blackboard principle for the data exchange as
a dynamic blackboard. In a dynamic blackboard architec-
ture blackboard entries will be distributed via the whole
system. Each processor administers it’s own local black-
board, which is organized as a priority sorted waiting
queue. For this reason, at any time, each individual pro-
cessor has access to a small part of the blackboard, only.
Blackboard entries will be exchanged between the proces-
sors using special distribution strategies.

Fig. 1 shows that on each processor participating in the dynamic blackboard setup, three processes are
running. All processes have access 1o a waiting queue, which contains a small part of the blackboard.
The receive process receives tasks and writes them into the waiting queue. The work process may read

a task from the waiting queue, executes this task, and writes processing results and/or new tasks into

the waiting queue. The send process sends tasks, which have to be executed by other processors, and
results to the next processor.

3 Results

In our present experimental setup the dynamic blackboard is realized on a transputer network, employ-

ing the transputer links for data exchange. First tests regarding parallel execution of image processing

tasks are made. These tests measure speed up and overhead for a parallel task execution on the dynamic

blackboard system. Fig. 2 shows the basic structure of our system, generally consisting of several rings
of dynamic blackboard processors. To study the system requirements of the dynamic blackboard system
we use the automated recognition of traffic signs from a moving vehicle. For these first tests we designed

S ~{TRE T}

Fig. 2. Dynamic Blackboard System
consisting of two Processor Rings

250

a symmetrical organized dynamic blackboard. In this ex-
ample we have only one blackboard (processor ring). The
strategy of distributing tasks over the system is to send
tasks to the next processors blackboard, when a processor
is busy. Compared to other distribution strategies, where
idling processors ask other processors for a task, our ap-

proach avoids additional overhead of idling processors.

The two conventional methods for parallel operation of
image processing applications are data partitioning and
functional partitioning. Data partitioning in image se-
quence analysis means that several processors execute the

same task on different parts of the image. Functional par-

CAIP91

titioning means that different tasks are executed on different processors. The tasks which have to be
executed in parallel in connection with the traffic sign recognition are for instance observing the left and
right road edge, searching for new candidates for traffic signs along the road edge, and tracking /5/ as
well as interpreting possible traffic signs. Fig. 3 illustrates the types of parallel execution in our system.

Fig. 3. Road Scene with Windows for Road Edge Tracking (a),
Candidate Search (b), and Traffic Sign Tracking and Interpreting (c)

The strategy in finding road edges is the subdivision of the problem into an initial global analysis of the
roadway and the tracking of the road edges. For the global analysis region orientated segmentation meth-
ods are used /6, 7/. When knowing the location of the road edges, it is sufficient to determine changes
in the location in small control windows /8/, because of the little changes between two images. For this
reason, tracking road edges can be executed in parallel for different locations within the TV image plane
by different processors. The tracking of the road edges by several windows represents data partitioning,
The results supplied by the parallel road edge tracking will be combined in a road model. The model

knowledge controls the positioning of the windows for road edge tracking and candidate search.

A window for searching candidates for traffic signs can be set in that area where new traffic signs appear
with a high likelihood. For the purpose of searching candidates for traffic signs we use different methods
i.e. searching for triangles, circles, or areas of specific colors. This is an example for functional partition-

ing, because there are different tasks for the same window.

Having found a distant candidate for a traffic sign it cannot be identified, because of its small size. Hy-
potheses about the type of the detected traffic sign will be generated. These hypotheses will be verified
in each new image. A hypothesis will be confirmed, rejected, or step by step refined. The smaller the
distance to the traffic sign, the more information about the traffic sign is available, so that the hypothesis

can be more specific. For the purpose of observing a traffic sign it must be tracked.

251

CAIP91

(%]

Fig. 4 shows the task graph for the automated recognition of traffic signs from a moving car. For each
image the tasks 1 to 7 have to be executed. The tasks 8 to 11 have to be executed only, if a candidate

for a traffic sign has been detected. These tasks are data dependent. The type and number of parallel
working tasks is dynamically changing.

The execution time for the parallel execution of the tasks from the task graph from Fig. 4 in dependence
on the number of working tranputers participating in the dynamic blackboard set up is measured. The
test varies the number of working transputers from 1 to 5. In this example we have 8 tasks for
"road_edge_tracking”, 4 different tasks for “candidate_search”, and two candidates for traffic signs,
which have to be tracked and interpreted. Fig. 5 shows the execution time and Tab. 1 t

he speed up de-
pending on the number of transputers.

y—

31 6.n

permanent task

data dependent task

Task 1: init_road_model Task 8:
Task 2: init_road_edge_tracking Task 9:
Task 3: road_edge_tracking
Task 4: update_road model

init_traffic_sign_model
traffic_sign tracking
Task 10 traffic_sign_feature extraction
Task 11: traffic_sign_interpretation
Task 5: init_candidate_search
Task 6: candidate_search:

- searching_for_circles

- searching_for_triangles

- searching_for_colored_areas
Task 7 init_candidate [ist

Fig. 4. Task Graph for Traffic Sign Recognition

CAIP91

100 1 Number of
Transputers n | Up
1 1.00
2 1.54
50 A
3 1.79
4 2.26
> 5 2.38
1 2 3 4 5 n
Fig.. 5. Relative Execution Time Depending on Tab. 1. Speed Up Depending on the
the Number of Transputers n Number of Transputers n

4.

Acknowledgements

The work has been supported by the Deutsche Forschungsgemeinschaft (DFG).

s.
(1]
(2]

(3]

CAIP91

References

Howe, Carl D., Bruce Moxon: "How to program parallel processors”, IEEE Spectrum, September
1987.

Ni Lionel M., Chong-Wei Xu, Thomas B. Gendereau: "A Distributed Drafting Algorithm for Load
Balancing”, IEEE Trans. on Software Engineering, Vol. SE-11, No. 10, October 1985.

Lin Frank C. H., Robert M. Keller: "The Gradient Model Load Balancing Method”,

IEEE Trans. on Software Engineering, Vol. SE-13, No. 1, January 1987.

Chou Timothy C. K., Jacob A. Abraham: "Load Balancing in Distributed Systems”,

[EEE Trans. on Software Engineering, Vol. SE-8, No. 4, July 1982.

Liedtke C.-E., H. Busch, R. Koch: "Automatic Modelling of 3D Moving Objects from a TV Image
Sequence”, SPIE/SPSE Symposium on Electronic Imaging, Santa Clara, CA., USA, Feb. 1990.
Turk Matthew A., David G. Morgenthaler, Keith D. Gremban, Martin Marra: "VITS-A Vision
System for Autonomous Land Vehicle Navigation”, [EEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 10, No. 3, May 1988.

Thorpe C.,M. H. Hebert, T. Kanade, S. A. Shafer: "Vision and Navigation for the Carnegie-Mellon
Navlab”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 3,

May 1988.

Dickmanns E. D., Th. Christians: "Relative 3D-State Estimation for Autonomous Visual Guid-
ance of Road Vehicles”, Intelligent Autonomous Systems 2 (IAS-2) Amsterdam,

11-14 December 1989.

