
Generalizations of Steering -
A Modular Design

Lars Wagner, Christopher Olson
Faculty of Computer Science
Otto von Guericke University

Magdeburg, Germany
{lars.wagner; christopher.olson}@ovgu.de

Alexander Dockhorn
Faculty of Electrical Engineering and Computer Science

Leibniz University
Hannover, Germany

dockhorn@tnt.uni-hannover.de

Abstract—Steering and its many variants have been used to
model multi-agent behavior in simulated worlds. Each variant of
the steering algorithm introduces its own concepts and components.
This work aims to generalize those in a modular building block
design which allows to recreate existing steering algorithms and
draft new versions. The concept is demonstrated in small-scale
study on aggregation functions which shows the impact of a single
building block on the agents’ behavior.

Index Terms—Steering, Context Steering, Aggregation Func-
tions, Dempster-Shafer Theory

I. INTRODUCTION

Path-finding for large swarms of agents is a complex problem
in which even modern solutions can struggle to find a solutions
due to the large search space [1]. Steering [2] has shown to be
an effective alternative to path-finding for controlling many-
agents. In classic steering, each agent consists of multiple
simple behaviors, which each propose a target movement
direction based on the local neighborhood of an agent. The
final movement direction is simply determined by aggregating
the decisions of each behavior.

Since classic steering methods do not use any information
besides the current neighborhood of an agent, deadlocks can
frequently occur. While those deadlocks might not be apparent
in the observation of the general behavior of a swarm, they
may break the immersion of a player that directly perceives it.
Therefore, many methods have made extensions of the classic
approach, to avoid frequent deadlock situations.

Arguably, the most prominent among them is the context
steering approach by Fray [3]. By not just aggregating the target
directions of an agent’s behaviors but actually comparing their
preferences for each possible direction, more information is
available during the aggregation process. The resulting steering
algorithm adds more parameters to the overall steering process,
but tuned agents have shown to result in more reliable behavior.

One of the big changes in context steering was the introduc-
tion of context maps. Those represent different objectives that
the agent can follow or avoid, such as danger and interest. While
every singular behavior will modify the values of these context
maps, filled maps need to be aggregated to make a selection of
the agent’s final movement direction. The aggregation approach
by Fray [3] simply filters the directions with a high danger
value and selects among the remaining directions with the

highest interest value. The approach has been generalized to a
multi-objective context steering proposed by Kirst [4], [5] in
which multi-objective decision-making functions are used to
select the most promising direction.

The works by Fray and Kirst have each observed drawbacks
of specific algorithmic components in the steering process.
To overcome them, they have replaced components with the
result of a more general steering method. First interested
in overcoming the stiffness of the aggregation process by
Fray [3], we have been working on its generalization to arbitrary
functions and studied their impact on the agent’s behavior.
Intrigued by this approach, we continued by breaking up the
steering algorithm into mostly independent building blocks.

In the following section, we will be presenting our modular
steering approach, which is based on components that are
frequently found in the existing works on steering. Naturally,
previous algorithms can be seen as instances of the general
steering concept, while the latter will help in the design
of new alternatives. As one example, we discuss possible
implementations of the aggregation mechanism in Section III.
We conclude the discussion of our steering model in Section IV
and mention perspectives for future work.

II. GENERALIZATIONS OF CONTEXT STEERING

We believe that splitting up the steering algorithm into
configurable components will make it easier to identify alter-
native implementations and design custom agents for specific
environments. Given an analysis of previous work, we boiled
down the concept of steering to perceiving (and memorizing)
the environment to make decisions by aggregating the pref-
erences of multiple behaviors. Furthermore, we emphasize
the importance of execution and control in complex physical
simulation and real-world environments. Highlighted words
mark the building blocks of our generalized steering concept
which is also depicted in Figure 1. The following subsections
will discuss the components, their addressed problems, and
some of their implementations in more detail.

A. Perception

The perception component ensures the observation of the
agent’s current surroundings, but may also include global
information to better guide the decision-maker. In previous

Fig. 1: Building blocks and reference implementations of generalized steering.

work, the perception of steering agents has usually been ensured
by directly accessing an object’s properties or using ray-
casts/laser sensors to measure the angle of and distance to
the agent [2]. Other works have added a globally planned path
to a distant object, which the agent should follow [5] to help
navigating large environments. Other sensors include but are
not limited to radar/lidar and 2D/3D cameras. The quantity and
quality of these sensors impact the amount of information that
the agent needs to process. For instance, increasing the number
of ray casts, will increase the granularity and can result in
smoother movement. Additionally, the fusion of information
from multiple modalities is a challenging task but may provide
the agent with an even better picture of its environment [6].

Steering in simulated environments (e.g., games) often
provides the agent with information on the type of a per-
ceived object since this information is readily available in
the object’s data. The same may be hard to ensure in real-
world environments, in which the classification of an object
may depend on multiple observable or even hidden properties.
While simple agents might just care for an object’s color, other
implementations are based on markers or sophisticated image
classification [7].

Next to a single agent that perceives its environment, a multi-
agent swarm can be considered. Here, agents can be enabled
to share information via communication. This may be used to
localize themselves in the swarm or to be aggregated for even
more information on the environment.

B. Memory

While previously described steering approaches aim to be
memory-less, this necessarily results in an agent that is prone to
deadlocks. Similar to local path-finding [8], storing information
on the environment may help the decision-making in later time
steps. A simple approach has been proposed in terms of history
blending [5], in which the previous time step (f(xt−1)) or its
context values are remembered and combined in a weighted
average (α) with values from the current time step (f(xt)).

h(xt, xt−1, α) = αf(xt) + (1− α)f(xt−1) (1)

This approach can easily be extended to store data from multiple
previous time steps. However, this linearly increases the amount
of data storage required given the number of time steps to
be stored. As an alternative, we can make use of a latent
vector representation as it is used in recurrent neural networks.
Training such a network, e.g. an LSTM, has shown to effectively
store information of previous time-steps [9].

Next to storing information on the local neighborhood of
the agent, we can use previous observations to build a map
of static obstacles. Simultaneous Localization and Mapping
(SLAM) [10] tracks the agent’s position and merges the agent’s
observations to build a consistent map of its environment. Both
can be used to define heuristics to effectively avoid deadlocks
by punishing areas that have already been visited or setting
exploration goals for yet unvisited areas. Similar approaches
are used in heuristic search [11] to make locally optimal
decisions and guarantee finding a solution. Extending SLAM
to multi-agent scenarios is still an active research topic [12]
with potential applications in multi-agent steering.

C. Behaviors and Movement Preferences

Behaviors are one of the key ideas of the steering concept.
Instead of defining a single complex behavior, we split it into
multiple simple behaviors. Those can be much easier to design
and implement, and their combination has the potential to
result in much more complex behavior. Each behavior should
process information made available by the agent’s perception
and memory components. Thereby, they can either propose a
single target vector, output a preference over possible movement
directions, or return a probability distribution over all directions.

Typical behaviors include a wide range of strategies for
moving toward points of interest or avoiding dangerous
areas [13] or circling around a target. More sophisticated
behaviors use the information of the perception and memory
components to predict the movement of dynamic objects and
either cut their way or flee from them more effectively [5].
Furthermore, an agent’s behavior may take its role or position
in a swarm into account and respond accordingly [14].

D. Aggregation and Decision-Making

Aggregation and decision-making are so closely coupled,
that we cannot break them apart into two separate building
blocks. It is often up to the decision-making algorithm how
the information is to be processed to make a decision.

While classic steering simply adds up all the target vectors
returned by the behaviors, context steering first aggregates them
into context maps (e.g., interest or danger) and then selects a
target direction. The standard aggregation method is storing
the maximal preference per behavior in the respective context
map. It boils down the available information to a single value
while information on the distribution is lost.

We propose to generalize this procedure by defining a
function that aggregates the target directions or preferences

of all behaviors. Thereby, the aggregation function becomes
an interesting end-point for (deep) learning-based approaches.
Apart from that, other descriptive measures can be used,
e.g. mean or median preference for a robust aggregation,
or min-preference for designing a risk-aware agent. Simi-
larly, probabilistic, information-theoretic methods and fuzzy
approaches [15], [16] can be implemented to aggregate the
preferences of all behaviors.

Traditionally, the two objectives of interest and danger have
been considered in steering. While danger values have been
used to filter the set of possible directions, the use of multi-
objective decision-making algorithms has been proposed by
Dockhorn et al. [5] to allow for a more granular decision-
making process. This opens algorithms to handle more than
two objectives. Additionally, we can use Pareto-dominance to
filter movement directions and weighting-based approaches to
change the priority of our objectives.

E. Execution and Control

Moving from simulations to real-world environments results
in uncertainties in the actuators and sensors [17]. To compensate
those, we introduce an execution and control component which
acts as a mediator between the agent and its environment. This
component can be used to adapt to the agent’s kinematic con-
straints such as maximum speed/acceleration and compensate
for the agent’s size for avoiding collisions.

III. COMPARISON OF AGGREGATION METHODS

One key item of the proposed building blocks is the
aggregation function which has previously not received much
attention. We demonstrate the impact of the aggregation
function in two experiments, i.e. an escape and a cooperative
collection task. Figure 2 shows the two exemplary scenarios,
which use a similar room layout. In the escape scenario, all
agents need to reach one of the two escape points to be safe.
During the cooperative collection task, we randomly place
items in the environment, which need to be collected by the
agents. A total of 200 items will have to be collected, while a
maximum of 10 will be active at the same time.

In our test, we will be using an agent with the following
setup: Perception: A radial sensor with a radius that covers
about one-tenth of the room will be used. Collectible items,
walls, and other agents will be recognized while being in
this radius. The positions of the escape points will always
be known to the agents. A total of 16 steering directions
will be evaluated. Memory: The perception of the previous
time-step will be stored and used via history-blending (cf.
Equation (1)). Behaviors: Two simple behaviors will be used.
The seek behavior will guide the agents closer to the target
while returning a maximal value in case a steering direction
directly points towards the target. A flee behavior will be used
to steer away from close dangers. Aggregations and Decision-
Making: The agent’s movement direction will be determined
using context steering. Interest and danger will be processed
separately. We will compare the effects of different aggregation
functions to combine multiple context values. Used aggregation

Fig. 2: Escape (left) and collection (right) evaluation settings.

functions will be described below. Execution and Control: In
our simulated environment, agents will always walk directly in
the direction of the chosen movement direction with constant
speed. Drag will be ignored.

Context steering as proposed by Fray [3] has been using the
maximum operator as an aggregation function. We exchange
this function with the median and sum of context values
overall perceived objects. Additionally, we propose Dempster-
Shafer aggregation as an information-theoretic approach to the
aggregation of context values. Here, each object o ∈ O in
the agent’s vicinity is defining a mass distribution mo over
all sensors representing the preference for the corresponding
movement direction and the certainty (co) as the a reciprocal
function of its distance to the agent. Masses are multiplied by
the object’s confidence and the uncertainty is used in remaining
calculations (uo = 1−co). Masses are combined by a variation
of Dempster’s rule of combination which takes the uncertainty
of each mass assignment into account and determines the joint
mass (m1,i) of the first i objects by:

for i in {1, . . . , |O|} :

m1,i = uim1,i−1 +m1,i−1mi + u1,i−1mi

u1,i = u1,i−1ui

In the escape experiment, we have tracked the time it takes
for a number of agents to reach an exit point. We repeated the
experiment for 25 trials while randomizing the initial agent
positions. Sometimes agents get trapped in a deadlock situation.
While this rarely happened, we decided to stop each simulation
after one minute, declaring all agent’s left as stuck. With an
average escape time of about 10 seconds, this has shown to
be more than enough time for agents to leave. Figure 3 shows
the evacuation times of the first 90 out of 100 agents and the
distribution of agents getting stuck. During the collection task,
we tracked the time it takes to collect a number of items and
the relative time in between two collection events. Figure 4
shows the respective results.

Both experiments show the large impact of the aggregation
function. In both experiments, the Dempster-Shafer aggregation
rule performed best, closely followed by Sum and Max. Median
has been the worst option during the collection task, while the
Sum operator seems to be most prone to deadlocks.

0 20 40 60 80
Evacuated Agents

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

To
ta

l T
im

e

Algorithm
Median
Sum
Max
Dempster-Shafer

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Agents Left

Median

Sum

Max

Dempster-Shafer

Fig. 3: Comparison of aggregation functions for completing the escape scenario tracking the total time it takes agents to
evacuate and the distribution of agents getting stuck.

0 25 50 75 100 125 150 175 200
Collected Items

0

10

20

30

40

50

To
ta

l T
im

e

Algorithm
Median
Sum
Max
Dempster-Shafer

0 10
0

10
1

Relative Time

Median

Sum

Max

Dempster-Shafer

Fig. 4: Comparison of aggregation functions for completing the collection scenario tracking the total time it takes agents to
collect a number of items and the distribution of the time in between tracking two targets.

IV. CONCLUSION

Motivated by the observations we made while reading
previous works on steering, we proposed a general building
block model for steering algorithms. We believe that this
structure can serve as a guideline to identify and design new
steering algorithms in the future. We used the design to create
four context steering agents with differing aggregation functions
and compared their performance in two tasks. This is far
from a comprehensive comparison of aggregation functions but
shows the great impact such a small parameter can have. In
upcoming experiments, we want to further compare different
implementations of each building block and their impact on
the behavior of a single agent and a swarm.

REFERENCES

[1] S. Mai and S. Mostaghim, “Modeling pathfinding for swarm robotics,” in
Lecture Notes in Computer Science. Springer International Publishing,
2020, pp. 190–202.

[2] C. W. Reynolds, “Steering behaviors for autonomous characters,” in
Game developers conference, vol. 1999. Citeseer, 1999, pp. 763–782.

[3] A. Fray, “Context steering: behavior driven steering at the macro scale,”
in Game AI Pro 2: Collected Wisdom of Game AI Professionals. CRC
Press, 2015, pp. 183–193.

[4] M. Kirst, “Multicriteria-optimized context steering for autonomous
movement in games,” Master’s thesis, Otto-von-Guericke University
Magdeburg, 2015.

[5] A. Dockhorn, S. Mostaghim, M. Kirst, and M. Zettwitz, “Multi-objective
optimization and decision-making in context steering,” in IEEE
Conference on Games, COG. IEEE, 2021. [Online]. Available:
https://doi.org/10.1109/CoG52621.2021.9619155

[6] H. Wu, M. Siegel, R. Stiefelhagen, and J. Yang, “Sensor fusion using
dempster-shafer theory [for context-aware hci],” in IMTC/2002. Proceed-
ings of the 19th IEEE Instrumentation and Measurement Technology
Conference (IEEE Cat. No.00CH37276), vol. 1, 2002, pp. 7–12 vol.1.

[7] D. Kragic and M. Vincze, “Vision for robotics,” Found. Trends Robot,
vol. 1, no. 1, p. 1–78, jan 2009.

[8] F. Peralta, M. Arzamendia, D. Gregor, D. G. Reina, and S. Toral, “A
comparison of local path planning techniques of autonomous surface
vehicles for monitoring applications: The ypacarai lake case-study,”
Sensors, vol. 20, no. 5, p. 1488, Mar. 2020. [Online]. Available:
https://doi.org/10.3390/s20051488

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[10] H. Temeltas and D. Kayak, “Slam for robot navigation,” IEEE Aerospace
and Electronic Systems Magazine, vol. 23, no. 12, pp. 16–19, 2008.

[11] R. E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42,
no. 2, pp. 189–211, 1990.

[12] M. Kegeleirs, G. Grisetti, and M. Birattari, “Swarm slam: Challenges
and perspectives,” Frontiers in Robotics and AI, vol. 8, 2021.

[13] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th annual conference on Computer
graphics and interactive techniques - SIGGRAPH. ACM Press, 1987.

[14] P. UG, “Polarith ai documentation,” http://docs.polarith.com/ai/, 2020,
accessed: 2020-02-28. [Online]. Available: http://docs.polarith.com/ai/

[15] I. L. Bajec, M. Mraz, and N. Zimic, “Boids with a fuzzy way of thinking,”
in Proceedings of ASC 2003, 2003, pp. 58–62.

[16] M. Mraz, N. Zimic, and I. L. Bajec, “Fuzzy model of bird flock foraging
behavior,” in Proc. EUROSIM 2007, 2007.

[17] S. Mai, N. Traichel, and S. Mostaghim, “Driving swarm: A swarm
robotics framework for intelligent navigation in a self-organized world,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2022.

