
PEKORA: High-Performance 3D Genome Reconstruction Using K-th Order Spearman’s Rank

Correlation Approximation

Advances in high-throughput sequencing technologies
have enabled the use of genomic information to better under-
stand biological processes through studies such as genome-
wide association studies, polygenic risk score estimation and
chromosome conformation capture. The study of spatial chro-
mosome organization of the human genome plays an impor-
tant role in understanding gene regulation. Chromosome con-
formation capture techniques, such as Hi-C, are able to simul-
taneously capture long-range interactions between all possible
pairs of loci on all chromosomes. These interactions are then
quantified as interaction frequency and represented as contact
matrices which are quantized at a specific genomic resolution,
i.e., interaction frequencies are accumulated for all 5 kb bins.
These techniques have revealed structures of genome organi-
zation, such as A/B compartments, topologically associated
domains (TADs), chromatin loops and frequently interacting
regions (FIRE).

Although the advancement of Hi-C techniques enables the
generation of massive amounts of high-resolution data, we
still face several challenges, such as a high proportion of miss-
ing data and noisy observed interaction frequencies. To ad-
dress these problems, we can first predict the spatial structure
of the genome in three-dimensional space, using the interac-
tion frequency as a proxy for the distance between two loci.
Second, given a predicted structure, we can then infer the
missing interaction frequencies. Unfortunately, it is compu-
tationally expensive to accurately and efficiently reconstruct
high-resolution genome structures using the existing state-
of-the-art methods such as FLAMINGO [5], H3DG [4], and
SuperRec [6]. This is due to the fact that the number of inter-
actions increases quadratically with an increase in resolution.
In this work, we present a High-PErformance 3D Genome
Reconstruction using K-th Order Spearman’s Rank Corre-
lation Approximation method to reconstruct high-resolution
3D chromosome models at 5 kb. It exploits the sparse matrix
property, uses an approximation of Spearman correlation as
the loss function, and adjusts automatically the step size of
gradient descent method at each iteration.

Methods: In our work, we focus on predicting the spa-
tial organization of each chromosome at high resolution. Let
C ∈ Rn×n be a contact matrix representing all in-cis interac-
tions of a chromosome. The number of rows or columns n is
determined by the length of a chromosome and the resolution
of the contact matrix. Due to missing data, we only have par-
tial observations of C over an index set Ω ⊂ {1, 2, . . . , n} ×
{1, 2, . . . , n}. To describe the contact matrix concisely, we de-
fine the observation operator PΩ : Rn×n → Rn×n as follows:

[PΩ(C)]ij =

{
Cij , (i, j) ∈ Ω,

0, otherwise,
(1)

where the number of observations is m = |Ω| ≪ n2.
A chromosome is modeled as a string of beadsP ∈ Rn×3 in

3-dimensional (3D) space, where each bead represents the cen-

ter of a DNA fragment at a specific resolution. The Euclidean
distance or “wish” distance between two beads is calculated
by converting the interaction frequency following Dij = C−α

ij

with the conversion factor α. Cij and Dij are the interaction
frequency and Euclidean distance between beads i and j, re-
spectively. Given P we can compute the Euclidean distance
matrix: D = 1diag(G)T +diag(G)1T −2G, where G = PPT

is the Gram matrix.
Unlike the competitors Hierarchical3DGenome

(H3DG) [4] and FLAMINGO [5], our method does not create
hierarchical structures. Instead, we exploit the sparseness of
the contact matrix and optimize its strucure using a gradient-
descent-based alternating-minimization method [3]. In each
iteration, we optimize the predicted DNA beads P by mini-
mizing the prediction error using the objective function

L = L1 + L2 (2)

with

L1 =
1

m

∑
∥Dij − D̂ij∥2,∀(i, j) ∈ Ω, (3)

where Dij and D̂ij are the Euclidean distance and the pre-
dicted Euclidean distance of beads i and j, respectively, and

L2 =

k∑
o=1

1

m− 2− o

m−2−o∑
l=1

σ(D̂l − D̂l+1+o), (4)

where σ(·) is the Rectified Linear Unit function. D̂l is the l-
th predicted Euclidean distance sorted according to the order
of the corresponding Euclidean distance Dl. Using the Rec-
tified Linear Unit function, the objective function penalizes
the predictions only when D̂l > D̂l+1+o.

In our experiments, we found that only using L1 as ob-
jective function is not sufficient to improve the accuracy of
the prediction, as the Euclidean distance is inversely corre-
lated with the interaction frequency, i.e. smaller interaction
frequencies result in larger distances. These values come from
very-long interactions between i and j where i ≪ j (or vice
versa), which tend to be noisier. Since the squared error favors
values with greater magnitude, it will prioritize the optimiza-
tion of noisy observations. Assuming that the data Dij are
sorted and the corresponding predicted Euclidean distances
D̂ij are sorted accordingly, the largest Spearman correlation

is obtained when D̂l ≤ D̂l+1,∀ 0 ≤ l ≤ m where D̂l is the
l-th prediction after sorting. The Spearman correlation does
not take into account the difference between D̂l and D̂l+1.
Therefore, we introduce the term L2 being the k-th order
Spearman’s rank order approximation.

We use the Adam [2] optimizer, an extension of stochas-
tic gradient descent, to update the DNA beads P. Unlike
stochastic gradient descent, which maintains a single step size
to update P, Adam updates the step size for each individual
point. This is done through the first and the second moments
of the gradients. In addition, the low memory footprint of
Adam allows it to optimize structures with a larger number



Figure 1: Spearman correlation obtained for the 3D reconstructions of each individual chromosome generated by PEKORA,
FLAMINGO, H3DG and SuperRec on the GM12878 data at a resolution of 5 kb.

of observations m. Although the step size is set individually
for each point, it still depends on the learning rate, and choos-
ing an appropriate learning rate during optimization is non-
trivial. Therefore, the step size of Adam itself is computed au-
tomatically based on the Barzilai-Borwein method [1], which
is an approximation of Newton’s method. To summarize the
optimization process, the DNA beads at iteration t are com-
puted as

P(t) = P(t−1) − η(t−1) · m̂(t−1)/(
√
v̂(t−1) + ϵ) (5)

where η(t−1) is the learning rate determined by the Barzilai-
Borwein method, m̂(t−1) is the first moment, and v̂(t−1) is
the second moment.

Results: To quantify the accuracy of the entire predicted
structure, we use the Spearman correlation, because it is inde-
pendent of the conversion between interaction frequency and
Euclidean distance. For our analysis, we used a Hi-C dataset
of the GM12878 cell line at a resolution of 5 kb (GEO Ac-
cession Number: GSE63525). We compared PEKORA to
the state-of-the-art methods FLAMINGO, H3DG and Su-
perRec [6]. For the 3D reconstruction, we set the order k
to 20. The data are preprocessed by normalizing it using
the Knight-Ruiz method to remove bias. In Figure 1, we
show the obtained Spearman correlations for the 3D construc-
tions of each individual chromosome generated by PEKORA,
FLAMINGO, H3DG and SuperRec on the GM12878 data at
a resolution of 5 kb. On average, PEKORA outperforms the
state of the art by a large margin of 35%.

Conclusion: We present PEKORA, a high-performance
3D genome reconstruction using k-th order Spearman’s rank

correlation approximation. We have shown that PEKORA
outperforms the state of the art by 35% on average. In the
future, we will include more analyses on other cell lines with
more evaluation methods, and at different resolutions.
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