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Abstract. Training Reinforcement Learning agents directly in any real-
world environment remains difficult, as such scenarios entail the risk of
damaging the training setup or violating other safety constraints. The
training process itself further requires extensive human supervision and
intervention to reset the environment after each episode. Thus, we pro-
pose an innovative Safe Reinforcement Learning framework that com-
bines Safe and Resetless RL to autonomously reset environments, while
also reducing the number of safety constraint violations. In this context,
we develop a novel risk-averse RL agent suitable for stringent safety
constraints by combining Safe RL, Distributional RL, and Randomized
Ensembled Double Q-Learning. Experiments conducted in a novel mobile
robotics scenario indicate that our Safe Resetless RL framework reduces
the number of human interactions required during training compared to
state-of-the-art methods, filling a gap in current problem formulations
and enhancing the autonomy of RL training processes in real-world set-
tings.

Keywords: Safe Reinforcement Learning · Distributional Reinforcement
Learning · Resetless Reinforcement Learning · Autonomous Navigation ·
Mobile Service Robotics

1 Introduction

As the capabilities of Reinforcement Learning agents have increased in recent
years [8, 11, 19, 37], interest in deploying RL agents to the real world has also
seen a sharp rise [17, 18, 21, 44]. However, most RL agents are trained in simu-
lated environments [4,6,12,20,28,34], which are unable to capture the dynamics
and the full complexity of the real world scenario that they are trying to simu-
late [32]. Therefore, deploying the agent to the real world often requires further
changes in order to adapt to the differences between the domains. Sim2Real
approaches [27, 43] try to bridge this gap between the simulation and the real
world. However, these methods do not address the root of the problem: the simu-
lated training process. While training the agent directly in its real world domain
solves many of the problems associated with the domain gap, it also leads to
other previously irrelevant problems [13]. The two main problems of moving
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the training process to the real world include the questions of how to reset the
training environment and how to ensure the safety of the training process. The
former problem arises from the fact that in simulated environments, there is typ-
ically a meta-action reset available. However, in the real world this meta-action
is equivalent to extrinsic interventions, e.g . manually driving the robot back to
its starting point. This makes the training process less autonomous, as constant
human supervision of the training process is needed to ensure the agent can start
its next episode. The second problem has to do with the fact that simulated envi-
ronments do not reflect the permanent and fatal consequences an agent’s actions
might have. For example, in the real world a robot might need to be repaired
after executing an undesired action, which again amounts to human intervention
being required. Thus, the agent needs to be additionally incentivized to mini-
mize the number of times an action leading to an unsafe state is selected. Most
existing agents avoid entering these unsafe states only because they do not max-
imize the agent’s expected return, not because of the state’s fatal consequences.
Training a RL agent in the real world thus requires the definition of some safety
constraints which the agent should respect to avoid damages to the experimental
setup [17]. Our main contributions are:

– We present a novel training framework for Safe Resetless Reinforcement
Learning (SRRL) in real-world environments that reduces the number of
human interactions necessary.

– We introduce our new risk-averse RL agent called DREDQ, which converges
faster to higher returns than state-of-the-art approaches.

– Our proposed framework reduces the number of human interactions com-
pared to existing Resetless RL approaches.

– In addition, we present a novel mobile robotics environment with realistic
sensor and kinematic simulation.

– The code is available at https://github.com/tgottwald/srrl.

2 Related Works

Our method combines the two research fields of Safe Reinforcement Learning
and Resetless Reinforcement Learning. We build upon previous works published
in the respective fields and adapt them to our holistic approach.

Safe Reinforcement Learning Most state-of-the-art Safe RL agents [3,28,38,39,
41] are based on on-policy algorithms, which do not provide the sample efficiency
needed for real-world experiments. Yang et al . utilize a risk-averse distributional
safety critic in their off-policy agent [42]. Their approach however adheres to
the classical separation of reward and cost signal in Safe RL and thus uses
separate critics for both. Consequently, only their cost critic uses distributional
RL, while the distributional critic in our approach considers both cost and reward
with respect to the distortion risk-measure. Recently, Sootla et al . proposed
Sautè RL [36], which makes Safe RL environments solvable with any standard
RL agents by wrapping the environment. The wrapper introduces a safety cost
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budget, which encodes the cost threshold and is concatenated to the agent’s
observation space. Every time the agent executes an action that incurs cost, the
remaining safety budget is reduced accordingly. If the safety budget is used up,
the reward returned to the agent is replaced with -1. Thus, the agent can learn
a causality between cost incurring actions and negative rewards and therefore is
able to avoid safety constraint violations. A different approach to Safe RL rooted
in control theory, is to use control barrier functions. However, these methods
often need to be pretrained with offline data [9, 29] or require the training of a
large auxiliary generative model [40].

Resetless Reinforcement Learning In [15] Eysenbach et al . propose their “Leave
No Trace” (LNT) approach which formalizes a Resetless RL structure many other
researchers have built upon [22, 24, 44]. LNT introduces a second agent called
the reset agent, which is responsible for resetting the environment to the initial
state distribution after the regular agent (now referred to as the forward agent)
has concluded its episode. Both agents use the same action and observation
space. However, the reset agent’s policy is independent of the one of the forward
agent. Thus, the structure of the framework alternates between the forward agent
trying to solve the task and the reset agent trying to reset the environment.
Additionally, Eysenbach et al . added an option for the reset agent to trigger an
early abort during the forward episode if the reset agent’s Q-value is below a
certain threshold, to prevent the forward agent from entering states the reset
agent cannot (yet) reset from. The main drawback of LNT is that it requires the
user to define an additional reset reward function for the reset agent to work.
Expressing the initial state distribution in terms of a reward function might prove
to be difficult and removes some autonomy from the training process. Therefore,
Kim et al . replace the reset agent with an example-based agent in [22].

3 Preliminaries

The Reinforcement Learning problem is formalized using a five-element tuple
(S,A, p, r, γ), which is known as a Markov Decision Process (MDP) [5]. A MDP
consists of a continuous space of states S in which the agent can influence the
currently active state by applying an action from action space A according to
the dynamics model p : S × A × S → [0, 1]. The dynamics model specifies the
transition probability p(st+1|st,at) to the next state st+1 ∈ S given a current
state st ∈ S and action at ∈ A. Typically, there also exists an initial state
distribution ρ0 : P(S) in which the agent starts. A consecutive sequence of
states and actions is commonly referred to as a trajectory τ . Furthermore, the
agent receives a reward after each transition according to the reward function
r : S×A×S → R based on the current state, the selected action and the successor
state. The rewards collected during an N -transition long trajectory are expressed
as the discounted future return G(τ) = rt+γrt+1+γ2rt+2+ . . .+γNrt+N . Here,
the discount factor γ is typically chosen to be less than 1 so that high rewards
in the distant future are less relevant to the agent’s decision in the present. The
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agent has to find an optimal policy π∗ according to the following equation:

π∗ = argmax
π

Jr(π), with Jr(π) = E
τ∼π

[G(τ)] . (1)

Safe Reinforcement Learning extends the classical MDP definition to a Con-
strained Markov Decision Process (CMDP) [2,28] by additionally including one
or more cost functions c : S ×A×S → R. The discounted future cost C(τ) can
be defined analogous to G(τ). However, a policy is only valid if the accumulated
cost of the corresponding trajectory are below a cost threshold d. This leads to
Eq. (1) now being constrained to a set of safe policies ΠC , thus resulting in

π∗ = arg max
π∈ΠC

Jr(π), where ΠC = {π : Jc(π) ≤ d}, with Jc(π) = E
τ∼π

[C(τ)] .

(2)

4 Proposed Method

Our approach to Safe Resetless Reinforcement Learning (SRRL) is based on
the fact that both Safe and Resetless RL have the common motivation in en-
abling RL agents to be trained in the real world. In our framework, we will only
consider fatal safety constraints. These type of constraint violations leads to a
catastrophic, non-reversible loss of the system controlled by the agent. There-
fore, any actions selected and observations made by the agent after violating the
safety constraints are useless or will result in the same observation, respectively.
Non-fatal safety constraints which have been typically used in Safe RL [2,28,42]
leave the system intact and controllable after safety violations. The agent is able
to keep observing the environment and selecting actions.

4.1 Safe Reinforcement Learning Agent

Since the safety constraints we assume in this setting are immediately violated if
the agent enters a set of unsafe states and thus the trade-off between reward and
cost is simple (see Sec. 5), we will only consider Safe RL environments that have
been Sautèd. We combine the Sautéd environment with our novel distributional
RL agent called DREDQ, which combines REDQ [8] and IQN [10] into a single
algorithm. Assuming a Sautéd environment furthermore has the advantage that
DREDQ is not restricted to Safe RL problems only, but might also be applied
to environments where undesired states are indicated by the reward function.
IQN uses Quantile Regression [23], where the inverse of the Cumulative Density
Function FG of the generic return distribution G is learned by mapping a H-
element vector of quantile fractions ι ∈ [0, 1] to their corresponding quantile
values Gι(s,a) = F−1

G (s,a, ι). The latter is also known as the quantile function.
In the case of G(s,a), the quantile values corresponds to the discounted return
if the trajectory starts in state s with action a and follows the policy after that.
Please note that in contrast to prior publications on the topic of Distributional
RL [10, 11, 42], we will use ι to denote the quantiles instead of τ , as the latter
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is already reserved for trajectories. IQN and most agents based on it [10,25] do
not use ensembles like the N critics found in the randomly sampled ensemble
of REDQ. Therefore, DREDQ presents a new approach to utilize ensembles of
any size with a distributional agent. Our TD error term is based on Ma et al .’s
formulation for Distributional SAC (DSAC) [25], but we generalized it to be
compatible with REDQ. For the critic, we calculate the conservative target in
the element-wise TD error δ

ιi,ι
′
j

t in Eq. (3). Here, we use the smallest predicted
quantile value of all ensemble networks as the target.

δ
ιi,ι

′
j

t = rt + γ min
m∈M

[
G

ι′j

θm
(st+1,at+1)− α log πϕ(at+1|st+1)

]
−Gιi

θm
(st,at) (3)

The IQN-loss itself remains unchanged to [10] and makes use of the Huber quan-
tile loss ϱκιi [11], where κ is the boundary at which the L1 loss transitions into
the L2 loss:

LGι,ι′ (θl) = E
(st,at,st+1)∼D
at+1∼π(·|st+1)

 1

H ′

H∑
i=1

H′∑
j=1

ϱκιi(δ
ιi,ι

′
j

t )

 . (4)

The hyperparameters H and H ′ denote the number of quantile fractions to
sample for the current and the successor state respectively. For DREDQ’s policy
loss, the mean of state-action values used in REDQ is replaced by a distorted
expectation Υ , resulting in the updated policy loss:

Lπ(ϕ) = E
st∼D

at∼πϕ(·|st)

[α log πϕ (at|st)− Υ (st,at, η)] . (5)

In DREDQ, Υ corresponds to the Conditional Value at Risk [30] of the lower
tail (see Eq. (6)), but any risk distortion measure can theoretically be used here.
Choosing CVaR has the advantage of the policy becoming risk-averse, as only
the worst η% of the distribution is considered.

Υ (st,at, η) = E
[
G′|G′ ≤ F−1

G (η)
]
, with G′ =

1

M

M∑
m=1

Gι̃
θm . (6)

To make the distorted expectation compatible with the REDQ’s M critics, we
calculate Υ using the mean quantile value over all available critics G′. Here, K
different quantile fractions ι̃ sampled from the region of interest are used. A
pseudocode version of our algorithm can be found in Algorithm 1. The UTD-
ratio L specifies how often to update the networks for each collected transition.
In practice, the actual start of the training is preceded by a warm-up phase in
which transitions are collected using a random policy to ensure that enough data
is available.
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Algorithm 1 Distributional Randomized Ensembled Double Q-Learning
Network Parameters θ0, . . . , θN , ϕ
Hyperparameters: λQ, λπ, λα, ϑ,H, L,M,N,H,H ′,K, η, κ
θ0 ← θ0, . . . , θN ← θN ▷ Initialize target network weights
D ← ∅ ▷ Initialize replay buffer
for each iteration do

at ∼ πϕ(·|st) ▷ Sample action from policy
st+1 ∼ p(·|st,at) ▷ Sample successor state from environment
D ← D ∪ {(st,at, r(st,at, st+1), st+1)} ▷ Store transition in replay buffer
for L update steps do

ι ∼ U([0, 1]), ι′ ∼ U([0, 1]), ι̃ ∼ U([0, η]) ▷ Sample quantile fractions
D′ ∼ D ▷ Sample mini-batch from replay buffer
M∼ {1, . . . , N} ▷ Sample M indices without replacement
θn ← θn − λQ∇̂θiL

ι,ι′

G (θn) for n ∈ {1, . . . , N} ▷ Update critics (Eq. (4))
ϕ← ϕ− λπ∇̂ϕLπ(ϕ) ▷ Update actor (Eq. (5))
α← α− λα∇̂αL(α) ▷ Adjust entropy temperature
θn ← ϑθn + (1− ϑ)θn for n ∈ {1, . . . , N} ▷ Update target networks

end for
end for

4.2 Example-based Reinforcement Learning Agent

Previous example-based agents like [14,16] cannot be used in the context of Safe
RL, as they are unable to learn about the possibly negative consequences of
their actions because of the agent only having access to the observations. For
our example-based reset agent, we assume that the agent has access to a signal
indicating whether the agent has caused a safety constraint violation, making
it the first safe example-based agent. Our method can be seen as attempting to
embed a function proportional to a hypothetical reward function directly into
the Q-function. The agent receives a set of success examples S∗, which consists
of states where the task has been completed. The first part of Eq. (7) represents
the critic being trained to predict an arbitrary positive value K ∈ R>0 for states
randomly sampled from S∗. The action needed to query the current Q-functions
approximation is taken from the current policy estimate.

LQ(θ) = E
s∗∼S∗,

a∗∼πϕ(·|s∗)

[
1

2
(Qθ(s

∗,a∗)−K)
2

]

+ E
(st,at,st+1)∼D

[
1

2

(
Qθ(st,at)−

(
γ min

j∈{0,1}

[
E

st+1∼p

[
Vθj

(st+1)
]]))2

]
(7)

The second part of the equation is identical to the regular critic loss term found
in SAC but without the reward. It is responsible for propagating the discounted
state-action value of the success states back through all other states, generating a
“value trace” the reset agent can follow to its target state. This kind of approach
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Forward
Agent

Reset
Agent

Early abort ∨ Step limit reached
/ Start reset episode

Reset successful
/ Start forward episode

(Step limit reached
∧ Environment not reset)

∨ Fatal safety constraint violation
/ Hard reset

Fatal safety
constraint violation

/ Hard reset

Fig. 1: Dynamics between the forward and reset agent in our Safe Resetless Reinforce-
ment Learning training framework. The reset agent takes over if the forward agent’s
episode reaches the step limit or if the forward agent would execute an action which
causes an early abort. Control is transferred back to the forward agent if the reset
agent successfully resets the environment. In this case, the forward agent will start its
episode from the state in which the reset agent ended theirs. If either the forward or
the reset agent violates a fatal safety constraint, the environment must be reset using a
hard reset. Additionally, the reset agent may cause a hard reset if it is unable to reset
the environment within its step limit.

requires some success examples states to be visited by the initial trajectories of
the agent, as otherwise the second part of Eq. (7) cannot create a connection
between the success examples and all other state. However, since we only deploy
this type of agent as part of the Resetless Framework, this is guaranteed to be
the case as the framework generates an implicit curriculum [15,22].

4.3 Resetless Reinforcement Learning Structure

Our training framework is based on the Resetless RL framework proposed by
Kim et al . [22]. We chose this framework over LNT [15] because the use of an
example-based reset agent grants greater autonomy and reusability compared
to LNT. We have modified the proposed transitions by Kim et al . to include
additional transitions when the agent causes a fatal safety constraint violation
(see Fig. 1). After a violation, the agent requests a hard reset as an additional
safety measure to prevent any further potential damage to the experimental
setup, since we do not have access to information about the severity of the
constraint violation. Like in LNT, the reset agent may trigger an early abort
of the forward agents episode if the reset agent’s Q-function for the transition
returns a value less than the threshold Qmin:

E = {(s ∈ S,a ∈ A)|Q(s,a) < Qmin} . (8)

This allows the reset agent to prevent the forward agent from entering states with
uncertain state-action values for the reset agent, which the reset agent might not
be able to reset from yet. This creates an implicit curriculum for the reset agent,
which ensures that the reset agent’s starting states will become gradually more
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difficult instead of always placing the agent at one of the most difficult states like
in the standalone version of the algorithm. Letting the reset agent start in or near
its goal distribution ρ0 in the starting phase of the training, further guarantees
that it’s Q-function is not sparse, since the reset agent does not have to start
from states whose Q-values are not connected to the goal state distribution. To
reduce the proportion of environments being used up by the agent, the reset
agent’s episode also terminate early if the agent has reset the environment by
reaching a state that satisfies

T = {s ∈ S|ρ0(s) > 0} . (9)

In contrast to [22] and [15], we do not mark the transition in which the reset
agent successfully resets the environment with a done flag in the replay buffer.
This has to do with the fact that the done flag signals the agent not to consider
the state-action value for the next state when calculating the TD target (see
Eq. (7)). For regular RL algorithms, this makes the TD target identical to the
reward if the done flag is set. Since our example-based reset agent does not use
a reward, the TD target would be set to zero. This encourages the reset agent’s
policy to stay in states close to the goal states but not to enter them, as the
agent cannot accumulate any further rewards once they entered the goal states
and the episode terminates.

5 Environment

For our experiments we implemented a new mobile robotics scenario based on
Schier et al .’s CarEnv [35] in which the agent has to drive a mobile platform back
to its charging area. Colliding with one of the walls leads to the episode being
terminated. We simulate the mobile platform using a bicycle model with rear
wheel steering. The robot is controllable using the action space (ωx, βtarget) ∈
[−1, 1]2, where ωx is the longitudinal acceleration or deceleration and βtarget the
target steering angle of the robot, which the steering controller tries to reach as
fast as possible. The observation space (m1,m2, ...,mN , vx, βcurr) consists of N
lidar distance measurements, which are concatenated by the robot’s odometry
in the form of the longitudinal velocity vx and its current steering angle βcurr.
All dimensions are again normalized to [−1, 1] with a −1 in a lidar dimension
indicating that the ray did not return an echo. The resolution and maximum
range of the lidar is fully customizable. We choose N = 300 with a maximum
range of 10 m, which results in a challenging high-dimensional observation space
unmatched by other existing environments and a higher degree of realism.

r(s,a) = −1collision + h · rpose(s,a)

rpose(s,a) = max

(
0, 1− |x− l|

xmax

)
·max

(
0, 1− |y − u|

ymax

)
·max (0, cos (θ − α))

(10)
The reward function depends on whether the robot has collided, its current pose
(x, y, θ) and target pose (l, u, α). For h, xmax and ymax the same values as in [35]
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Fig. 2: Screenshot showcasing our environment. The walls limiting the drivable area are
represented by black lines. The area indicated by the white floor markings represents
the charging area in which the robot should stop. Furthermore, we visualized the lidar
scan available to the agent by marking the lidar echos with red dots.

are used. We further want to highlight that the target pose is not accessible to
the agent through its observation space like in other environments [27] and the
agent instead has to learn to interpret its raw sensor readings. Figure 2 shows
the setting of our environment. The environment does not offer a cost function
and thus does not formally qualify as a Safe RL environment as defined by
Ray et al . [28]. However, we argue that this environment (and probably many
others) can be seen as a Safe RL environment if we view the environment as a
Sautéd [36] version of an underlying Safe RL problem. Assuming a binary cost
function returning a cost of k for state-action tuples violating a safety constraint
and a Sautèd Safe RL environment with a cost budget of k, a single unsafe action
would immediately use up the cost budget and thus make the environment return
a negative reward. This behavior is identical to our environment’s original reward
function. The only difference remaining is that Safe RL environments typically
do not terminate episodes after the safety constraint has been violated, as they
only assume non-fatal safety constraints. With fatal safety constraints, there
is no benefit in continuing the episode after a constraint violation, since the
same transitions will be added to the replay buffer over and over again after
the violation. This can even have a negative impact on the agent’s performance,
since the replay buffer is filled with fewer transitions relevant to solving the task.

6 Experiments

We carried out our evaluation using best-practice methods [1]. Thus, all results
reported use the interquartile mean and 95% confidence interval based on 10
randomly seeded training runs for each algorithm.

In our distributional critics, we reuse IQN’s network architecture [10] with
a 512 dimensional embedding and H = H ′ = K = 32. All other critics use a
256 − 256 − 1 MLP with ReLU activation. For the Huber loss parameter, we
determined a value of κ = 0.01. The safety level η is set to 0.25. L = 10, M = 10
and N = 2 is used for all REDQ and DREDQ runs, while all other agents
use the default values L = 1, M = 2 and N = 2 [19]. All the parameters used
were determined by grid search unless noted otherwise. The actor is build using a
256−256 MLP with ReLU as the shared network and separate dense layers for the
mean and log-std transforming the output to the action space’s dimensionality.
All agents use the same default learning rate of 0.0003 for λQ, λπ and λα.
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Table 1: Interquartile means of the performance metrics for all standalone agents
evaluated on our environment after 106 training steps. Best results are highlighted in
bold and second-best results are underlined. Our DREDQ agent achieves the overall
best results, while the classical Safe RL agent causes the most violations.

Agent Return ↑ Safety Violations ↓ Hard Resets ↓
IQM CI95 IQM CI95 IQM CI95

SAC 12.68 [12.24, 13.06] 160.33 [144.66, 182.00] 3431.33 [3421.83, 3445.16]
REDQ 12.95 [12.60, 13.21] 118.50 [101.66, 137.33] 3418.50 [3402.50, 3435.00]
WCSAC 12.95 [12.76, 13.13] 372.00 [337.00, 412.33] 3565.00 [3542.16, 3596.33]
DSAC 12.96 [12.70, 13.23] 110.66 [95.00, 121.50] 3406.16 [3393.00, 3415.66]
DREDQ (ours) 13.44 [13.40, 13.47] 112.50 [100.00, 124.50] 3418.66 [3407.50, 3428.66]

6.1 DREDQ Evaluation

In order to make the influence of all of our proposed methods more comprehensi-
ble, we will first evaluate our DREDQ agent (Sec. 4.1) as a standalone algorithm
before incorporating it in our SRRL framework. Therefore, we will be looking at
the performance of DREDQ in a classical RL scenario, where the environment
is reset using a reset meta-action. Table 1 shows that all best and second-best
results can be either associated with either DSAC or DREDQ. When only con-
sidering the final results in Tab. 1, both algorithms reduce the number of safety
violations compared to SAC by around 30% and achieve overall similar results
with the most significant difference being visible in the episodic return where
DREDQ achieves a higher mean episodic return and higher lower 95% confi-
dence interval bound than DSAC’s upper confidence bound. Interestingly, the
Safe RL agent WCSAC [42] caused by far the most violations, showing that clas-
sical Safe RL approaches are unsuited for problems with fatal safety constraints.
The benefit of combining the overall safer performance of a distributional agent
with the higher convergence speed of REDQ becomes more noticeable when look-
ing at the course of our metrics during the training in Fig. 3. DREDQ already
converges after about 5.5×105 environment steps in terms of the episodic return
achieved, at which point around 69 violations have occurred, reducing the num-
ber of violations compared to SAC by 66%. This makes the DREDQ agent best
suited for training in a real-world environment as it requires the overall fewest
training steps and thus time to learn to solve the task and also causes the fewest
number of violations in the meantime. Furthermore, DREDQ remains real-time
capable at a sampling rate of 10Hz.

6.2 SRRL Evaluation

For the evaluation of our Safe Resetless Reinforcement Learning framework
(Sec. 4.3), we will compare the performance of our approach to a standalone
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Fig. 3: Course of the episodic return (Fig. 3a) and number of safety violations (Fig. 3b)
during a training with 106 environment steps for multiple standalone agents. The solid
line represents the interquartile mean, while the shaded area indicates the respective
95% confidence interval. Additionally, Figure 3c depicts the episodic return over the
interquartile mean of the number of violations during training. Please note that the
violation axis is scaled logarithmically for this figure. The higher the return and the
lower the number of violations, the better the agent. DREDQ is the fastest to converge
to a high episodic return, with one of the lowest total number of safety violations.

SAC agent with external hard resets and Leave No Trace with SAC for both the
forward and the reset agent. In contrast to our approach, which only uses exam-
ples like [22], LNT requires an additional reset reward function to be defined. For
this, we change the target pose in Eq. (10) from the center of the charging bay to
the center of the spawn area. For all other pairings, we used our example-based
variant of SAC (EBSAC) from Sec. 4.2. All methods were trained using a total
of 1.5× 106 environment steps. Looking at the results in Tab. 2, the pairing of
a vanilla SAC agent with our EBSAC agent appears to perform the best from
a safety violation and hard reset perspective. However, these values need to be
considered with respect to the forward return, where the pairing achieves sig-
nificantly less return than with DREDQ as a forward agent. The reason behind
the lower number of safety violations and hard resets of the other pairings can
be found when looking at the final deviation from the target pose in Tab. 3.
DREDQ is the only forward agent that consistently reaches the target pose in
our SRRL framework. All other pairing achieve higher residuals in terms of their
x and y deviation. The latter indicates that the forward agent has not learned
to drive the robot into the charging bay yet and ends its episodes with the robot
still inside the main corridor. This provides the reset agent with a less complex
and risky initial state compared to the agent taking over with the robot inside
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Table 2: Interquartile mean and 95% confidence interval for the resetless performance
metrics for different forward and reset agent combinations after 1.5× 106 environment
steps. The best result in each category is emphasized in bold and the second-best
underlined. DREDQ is the only forward to achieve a high enough return to complete
the task at this point in training.

Forward Agent Reset Agent Forward Return ↑ Forward Violations ↓ Reset Violations ↓ Hard Resets ↓
IQM CI95 IQM CI95 IQM CI95 IQM CI95

SAC (External Resets) - 12.92 [10.63, 13.18] 234.33 [192.00, 279.16] - - 5159.50 [5129.16, 5196.16]
SAC (LNT) SAC 11.75 [9.44, 12.43] 102.16 [81.00, 151.16] 208.83 [162.33, 254.16] 1251.00 [1001.33, 1584.50]
SAC EBSAC 11.46 [11.04, 11.84] 76.20 [61.20, 97.00] 157.50 [136.00, 188.10] 830.10 [757.30, 929.30]
DREDQ (ours) EBSAC 12.98 [12.75, 13.15] 94.00 [47.33, 118.66] 244.66 [162.00, 323.66] 1162.33 [821.33, 1527.66]

Table 3: IQM and 95% CI for the forward agent’s deviation from the target pose after
1.5× 106 training steps. DREDQ is the only agent to achieve < 10 cm for ∆x and ∆y.

Forward Agent Reset Agent Forward ∆x [m] ↓ Forward ∆y [m] ↓ Forward ∆θ [◦] ↓ Forward ∆v [m/s] ↓
IQM CI95 IQM CI95 IQM CI95 IQM CI95

SAC (External Resets) - 0.26 [0.15, 0.84] 0.12 [0.05, 0.78] 4.86 [2.90, 17.57] 0.07 [0.00, 0.96]
SAC (LNT) SAC 0.46 [0.23, 0.86] 0.51 [0.27, 0.81] 2.63 [0.91, 6.68] 0.00 [0.00, 0.05]
SAC EBSAC 0.36 [0.22, 0.60] 0.68 [0.44, 0.83] 4.33 [2.28, 7.40] 0.00 [0.00, 0.00]
DREDQ (ours) EBSAC 0.05 [0.02, 0.10] 0.06 [0.00, 0.19] 8.21 [2.27, 12.66] 0.00 [0.00, 0.04]

the charging bay, since in this case the reset agent only has to drive backwards
in a straight line to reset the environment. Thus, the number of hard resets and
safety violations is lower for these pairings. The generally high ∆θ values of the
95% CI upper bound can be explained by the non-linearity of the cosine func-
tion used in Eq. (10). The non-linearity leads to the angular error becoming less
relevant for maximizing the return the closer θ becomes to zero, thus incentiviz-
ing the agent to optimize for ∆x and ∆y instead. Overall, DREDQ is the only
non-standalone forward agent capable of learning to solve the environment’s task
within the step limit. Further experiments have shown that a SAC forward agent
requires at least 3× 106 environment steps to solve the task, while still reaching
lower final returns, causing more forward violations and a comparable number
of reset violations and requiring a similar number of hard resets. Figure 4c and
Tab. 2 show the absolute number of hard resets performed during the training.
Our SRRL framework reduces the number of required hard resets to approxi-
mately one fifth of the hard resets of the standalone SAC trained for the same
number of steps. Even when we account for the fact that the standalone SAC
would be sufficiently trained after 106 environment steps like in Tab. 1, the num-
ber of hard resets is still reduced by 66%. Figure 4c visualizes the development
in the share of successful soft resets by the reset agent in the total number of
resets requested. All pairings using our EBSAC reset agent converge to the point
where almost all resets are performed by the reset agent faster than the LNT
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Fig. 4: Interquartile mean of the episodic return (Fig. 4a), the number of hard resets
performed during training (Fig. 4b) and proportion of the soft resets in the last 100
requested resets (Fig. 4c) plotted over 1.5×106 environment steps. The 95% confidence
interval of all metrics are represented by the shaded areas. The pairing with a DREDQ
forward agent converges faster to high episodic returns than all other pairings and even
standalone SAC. All pairings significantly reduce the number of required hard resets,
with DREDQ and EBSAC also requiring fewer resets than LNT. LNT’s reset agent
takes the longest to learn to consistently reset the environment. For the relationship
between episodic return and accumulated safety violations in Fig. 4d, the safety vio-
lation axis is scaled logarithmically and based on the interquartile mean. The higher
the return and the lower the number of violation, the better the agent. DREDQ is the
only forward agent that learns to complete the task within the step limit.

baseline. This implies that the additional reset reward function of LNT restricts
the reset agent’s learning progress and the example-based approach leaves more
freedom for the reset agent to exploit. However, the reset agent appears to be
the main cause of violations regardless of the framework used, as can be seen in
Tab. 2. To further assess the quality of the policy learned by our EBSAC reset
agent, we illustrate the last 100 trajectories of the forward and reset agent of
the DREDQ - EBSAC pairing in Fig. 5. The trajectories of both agents overlap
considerably, thus indicating that the EBSAC reset agent learned a policy which
is almost exactly inverse to the forward agent’s policy. This confirms that our
simple approach to example-based RL works in the context of our framework.

7 Current Limitations and Future Work

Currently, our approach relies on an extrinsic signal to indicate whether our
condition for a successful reset is met. Although this requirement can be chal-
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Fig. 5: Exemplary illustration of the last 100 trajectories driven by the robot controlled
by a DREDQ forward agent (blue lines) and an EBSAC reset agent (orange lines). The
forward agent’s starting positions are marked with green circles and positions where
it collided with an obstacle are highlighted by a red cross. For the reset agent, the
starting positions are colored turquoise and points of collision in purple. The reset
agent’s trajectories closely follow those of the forward agent. Moreover, the converged
reset policy results in the forward agent’s initial state distribution forming a smaller
cluster than the environment’s original distribution.

lenging in practical scenarios due to the need for an external tracking setup, it
allows us to simplify the overall framework and concentrate on demonstrating
the core concept. In future work, we aim to eliminate this reliance on external
signals by incorporating anomaly detection methods [26,31,33]. This will enable
the agent to autonomously determine if the current state is part of the initial
state distribution, further enhancing the framework’s practicality. Furthermore,
Fig. 5 shows the forward agent’s starting positions are closely clustered due to
the reset agent converging to a policy. This clustering can impact the forward
agent’s ability to generalize well. To address this, we plan to introduce random-
ness and thus variance to the final steps of the reset agent’s trajectory using
methods like RND [7]. Moreover, we are optimistic about reducing reset safety
violations and minimizing the steps required by the reset agent even further by
developing an example-based variant of DREDQ.

8 Conclusion

In this paper, we demonstrated the benefits of combining Safe and Resetless Re-
inforcement Learning in our novel Safe Resetless Reinforcement Learning frame-
work to further increase the autonomy of the training process. We also explored
the possibility of using distributional agents on Sautéd Safe RL environments
and introduced DREDQ a new high-performing algorithm which leverages the
advantages of both distributional RL and REDQ to achieve an unseen conver-
gence speed while also reaching the highest episodic returns in our evaluation.
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