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Abstract—Cochlear implants (CIs) are surgically implanted
hearing devices, which allow to restore a sense of hearing in
people suffering from profound hearing loss. Wireless streaming
of audio from external devices to CI signal processors has become
common place. Specialized compression based on the stimulation
patterns of a CI by deep recurrent autoencoders can decrease
the power consumption in such a wireless streaming application
through bit-rate reduction at zero latency.

While previous research achieved considerable bit-rate re-
ductions, model sizes were ignored, which can be of crucial
importance in hearing-aids due to their limited computational
resources. This work investigates maximizing objective speech
intelligibility of the coded stimulation patterns of deep recurrent
autoencoders while minimizing model size. For this purpose, a
pruning-aware loss is proposed, which captures the impact of
pruning during training. This training with a pruning-aware
loss is compared to conventional magnitude-informed pruning
and is found to yield considerable improvements in objective
intelligibility, especially at higher pruning rates. After fine-tuning,
little to no degradation of objective intelligibility is observed up to
a pruning rate of about 55 %. The proposed pruning-aware loss
yields substantial gains in objective speech intelligibility scores
after pruning compared to the magnitude-informed baseline for
pruning rates above 45 %.

Index Terms—pruning, pruning-aware loss, autoencoders,
cochlear implants, wireless transmission, stoi, vstoi.

I. INTRODUCTION

Cochlear implants (CIs) are surgically implanted hearing-
aids capable of restoring a sense of hearing in people suffering
from moderate to profound hearing loss. While good speech
understanding is achieved in high speech-to-background noise
environments, more challenging environments as encountered
in social situations still pose a problem [1]. Wireless streaming
of audio as required for, e.g., beamformers, remote micro-
phones [2] or binaural sound coding strategies [3] is among the
techniques applied to improve speech understanding in these
challenging environments. To save power or bandwidth in this
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wireless transmission, data compression is commonly applied
to reduce the bit-rate of audio signals before transmission.
This compression usually introduces an additional delay and
should be kept as small as possible, as speech perception of
hearing aid users can be affected by delays above the range
of 5 − 10 ms [4]. For this purpose, we proposed [5]–[8] to
code and transmit the electrical stimulation patterns generated
by the sound coding strategy of the CI. With this approach,
we achieved a bitrate of about 4.7 kbit/s at zero latency with
little to no degradation in objective intelligibility scores [9].

The commercial application of deep learning in hearing
aids remains limited, despite a vast amount of research being
published in this area, in part due to limited computational
resources. For example, hearing aid processors offer tiny
amounts of on-chip memory of around 32 kB to 300 kB
[10]. This complicates the usage of deep neural networks,
which consists of thousands up to billions of parameters,
depending on model architecture, and as such usually require
substantial amounts of memory and further computational
resources. To tackle such limitations, compression of artificial
neural networks, namely by quantization and/or pruning, is
commonly employed to allow the deployment on resource-
constraint devices.

Pruning methods are roughly differentiated according to
pruning structure (structured vs. unstructured), pruning time
(before, during or after training) and pruning criteria. A recent
survey of pruning methods can be found in [11].

Pruning criteria are split between learned and non-learned
methods. Learned pruning methods consist of, e.g., reinforce-
ment learning for layerwise sparsity ratio selection followed
by conventional pruning [12], learning meta-networks pruned
using evolutionary algorithms [13] and sparsity-regularization
methods that introduce additional sparsity-related terms into
the loss function [14]–[16]. Non-learned pruning methods
are largely based on assessing the importance of weights
through derivatives of the loss function. The idea is to prune
the weights with the least impact on the loss function. The



most basic approach of this class of pruning methods uses
magnitude-informed pruning, where weights with the smallest
absolute value are pruned. Further, commonly employed prun-
ing methods are gradient-informed, where weights are pruned
based on the absolute gradients, and so called movement
pruning, where weights are pruned based on the magnitude of
the product the weights and their respective gradients |ωi · ∂L

∂ωi
|.

More generally, such methods are built on the belief that
Taylor’s expansion of a loss function allows to reasonably
assess the loss change due to pruning. However, derivatives,
evaluated at a single point, give local information only.

A. Contribution

The previously mentioned class of pruning methods, based
on derivatives of the loss function, has two major drawbacks:
Besides being unable to capture the global loss change due
to pruning weights, these methods usually do not allow the
network to adapt to the weights to be pruned during the initial
training. If the network ”knew” it was going to be pruned, it
could adjust its weights to become more robust to the pruning
of its weights. These two drawbacks can be improved in
the following way: By introducing weight perturbation during
training, the global impact of subsequent pruning of certain
weights can be captured during training. As such, the network
can reconfigure its weights to become more robust to said
pruning.

The proposed method is to devise a pruning-aware loss,
which incorporates the above ideas. The proposed method
makes no assumptions regarding model architecture (e.g. does
not differentiate between layer types) and requires only a
moderately increased training complexity.

II. METHODS AND MATERIALS

A. Pruning

Pruning in the context of artificial neural networks is any
mapping

P : ω → ω̂ (1)

of a network’s weights ω ∈ RN , with the number of weights
N , to the pruned weights ω̂ ∈ RN , where the mapping P can
be defined according to

P (ω)i ≡ ω̂i :=

{
0 i ∈ Ipruned

ωi otherwise.
(2)

Ipruned ⊂ {1, 2, . . . , N} is a set of indices indicating the
network weights to be pruned/set to zero. Weights not pruned
remain unchanged. A pruned network as such is a neural
network, where the pruned weights are removed, potentially
reducing the complexity, but in general also the performance,
of a neural network.

Pruning methods usually consist of the initial, actual prun-
ing as defined above, and subsequent fine-tuning of the pruned
network. The above pruning mapping P can, without loss of
generality, be written in the form

P (ω) = ω +∆ω, (3)

with

∆ωi =

{
−ωi i ∈ Ipruned

0 otherwise
. (4)

A key component of pruning methods therefore usually is to
find an optimal ∆ω, which hereinafter is called the pruning
direction.

1) Proposed Pruning Method: In this work, we propose
a novel pruning method based on the observation that one
issue of pruning methods is the choice of an optimal pruning
direction.

It is proposed to devise a pruning-aware loss, which incor-
porates the above ideas. To make a given loss Lω pruning-
aware (PA), where ω denotes a network’s weights, the loss
function is modified according to

LPA
ωn

= Lωn
+ λ|Lωn

− Lωn+∆ωn
|. (5)

Lωn+∆ωn
is the loss of a network computed with the

perturbed weights ωn+∆ωn, where n is the iteration index. λ
is a positive weighting factor, in this work equal to one. The
term |Lωn

−Lωn+∆ωn
| captures the global impact of pruning.

Because it appears reasonable to assume,that strong pertur-
bation of the weights during the early phases of training could
not give a network enough time to reconfigure itself, pruning is
gradually introduced in the loss. That is, the pruning direction
∆ωn is gradually approaching the actual pruning direction
across training iterations according to

∆ωn = g(
n

nmax
)∆ωmagn,n, (6)

where ∆ωmagn,n is the magnitude-informed pruning direc-
tion in iteration n, i.e., the weights with the smallest magnitude
in iteration n are perturbed. g : [0, 1] → [0, 1] is called
perturbation function and defines the attack time of the weight
perturbation. nmax is the total number of training iterations.

Because the perturbation is applied to all weights, in-
different of the layers they belong to (global unstructured
pruning), the proposed method is presumed model agnostic,
i.e., can be applied to any model architecture. A downside
seems to be the moderately increased complexity due to either
additional training steps or the need of an additional gradient
computation.

To the best knowledge of the authors, no similar pruning
method exists in the literature.

B. Evaluation Metric

Objective speech intelligibility of the decoded stimulation
patterns is assessed using the vocoder short-time objective in-
telligibility measure (VSTOI). For its application, stimulation
patterns are resynthesized by a (sine) vocoder provided by the
Nucleus Matlab Toolbox [17]. The resulting waveform is then
compared to a corresponding clean speech signal using the
well-known short-time objective intelligibility measure (STOI)
[18]. STOI returns scores in the range [0, 1] with 0 indicating
worst, and 1 indicating best intelligibility.

VSTOI is known to be very sensitive, that is, minor changes
in VSTOI scores correspond to way larger changes in word



recognition scores as tested in subjects. Going by word-
recognition functions shown in [19], in the linear region, one
can deduce, that a change of approximately 0.006 in VSTOI
score corresponds to about 5 % in word recognition scores.
Note, that the precise correspondence between VSTOI and
word recognition scores generally depends on the dataset being
used.

C. Stochastic Perturbation Simultaneous Approximation

For all optimizations in this work, the Stochastic Per-
turbation Simultaneous Approximation (SPSA) algorithm is
used [20]. The SPSA allows to optimize non-differentiable
functions through random perturbations and iterative updates.

The update equation of the SPSA for all parameters ω of a
model (including, e.g., quantizers) is

ωk+1 = ωk + ak
(y+k − y−k )

2 · ck
∆k, (7)

where y±k = f(ωk ± ck∆k), ∆k ∈ {−1, 1}N a vector of iid
noise, ak, ck > 0 with ak, ck → 0. N is the total number
of parameters. In our work, we used ak = a

(A+k+1)γ with
a = 1, A = 10273 and γ = 0.602 as well as ck = c

(k+1)β

with β = 0.101 and c = 0.020765. A and c were found in [9]
through hyperparameter optimization. In our case, the function
f returns mean VSTOI scores of the decoded stimulation
patterns of the model to be optimized.

D. Evaluation

To assess the impact of the proposed pruning-aware training,
a pretrained feedback recurrent autoencoder (FRAE) with 6 bit
vector quantization as described in [9] is further optimized
using the proposed pruning-aware loss according to Eq. 5
for 1000 iterations. The following perturbation functions were
assessed: g(x) = x, g(x) = x2 and g(x) = x3. This choice
yields more and less ”aggressive” perturbation of the network
weights.

We investigate whole-model pruning and decoder-only
pruning. In whole-model pruning, the weights of both, encoder
and decoder, are eligible for pruning. In decoder-only pruning,
only the weights of the decoder are eligible, the weights of
the encoder remain unchanged. This distinction is motivated
by the observation that a CI signal processor, acting solely
as a receiver as in wireless phone call streaming, only needs
to decode the received data, thus only needs the FRAE
decoder. In bilateral signal processing strategies, however,
where stimulation patterns could be transmitted between two
signal processors located at opposite ears, the signal processors
have to encode and decode data, as such require the entire
FRAE model.

Pruning rates pr ∈ {0.05, 0.1, . . . , 0.95} are investigated.
Only pruning of the weights (in contrast to bias pruning) is
considered. For decoder-only pruning, the pruning rate refers
solely to the decoder’s weights.

The FRAE model used in this work is an already tiny model
with only slightly more than 3300 weights. Due to this, unlike
for way larger models like ResNets, it cannot be expected to
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Fig. 1. Baseline magnitude-informed prunings results for whole-model and
decoder-only pruning.

achieve little to no degredation in model performance for very
high pruning rates like 95 %.

As baseline for our method we chose magnitude-informed
pruning.

The entire evaluation consist of pruning and subsequent
fine-tuning of the pruned models. For the proposed method,
this procedure consists of an initial 1000 SPSA iterations,
where the pruning-aware loss as given in Eq. 5 is used, with
the mean VSTOI scores of the decoded stimulation patters of
the training set as base loss function Lω . After this training
phase, the FRAE is pruned with a predefined pruning rate, and
the pruned FRAE is trained, now with respect to mean VSTOI
scores without any perturbation, for another 7000 iterations.

For the baseline, the FRAE is pruned first, without any addi-
tional training, and subsequently fine-tuned for 8000 iterations
using the SPSA algorithm to match the total of 8000 iterations
of the proposed method.

E. Dataset

The dataset of this work is identical to the one used in [9].
It consists of stimulation patterns derived from speech in noise
samples, where the speech samples stem from the well-known
TIMIT speech corpus. The speech samples were mixed with
noise at signal-to-noise ratios ranging from -5 dB to 40 dB
using head-related transfer functions. Office, bus, restaurant
and CCITT-noise were considered.

The stimulation patterns are derived from these audio mixes
using the advanced combination encoder (ACE) sound coding
strategy as provided by the Nucleus Matlab Toolbox. Default
parameters are used for ACE, most importantly, a channel
stimulation rate of 900 pulses per second as well as N = 8 and
M = 22 is used, where M is the total number of subbands and
N is the maximum number of selected subbands per frame.
The dataset and ACE are described with considerable detail
in [9] and [21].

The resulting train set consists of 100 stimulation patterns,
a sufficiently generalizing subset of a more than 4000 files
counting training data set, while the test set consists of 1680
stimulation patterns. All presented results are obtained on the
test set.
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Fig. 2. VSTOI scores of the baseline whole-model pruning and the proposed
pruning method. Similar performance is achieved up to a pruning rate of
35 %. Starting at 40 %, with a single exception, the proposed pruning method
considerably outperforms the baseline method.

III. RESULTS

Baseline results are shown in Fig. 1 for whole-model and
decoder-only pruning alongside the reference model perfor-
mance, i.e., the original model without any applied pruning.
As expected, decoder-only pruning yields considerably higher
post-pruning VSTOI scores. However, until a pruning rate
of about 35 %, pruning barely affects model performance
for either pruning type. At pruning rates of 90 % and 95 %,
the performance of whole-model pruning surpasses decoder-
only pruning with respect to VSTOI scores. However, VSTOI
scores below about 0.45 are achieved by randomly initialized
models. As such, the decoded signals contain only noise and
do not represent a meaningful compression scheme. Fig. 2
shows a comparison of the VSTOI scores of the baseline
pruning method and the proposed pruning method for whole-
model pruning. If not noted otherwise, linear perturbation was
used in the pruning-aware loss in all presented figures. The
proposed method yields superior post-pruning performance
for all pruning rates with the exception of the pruning rates
90 % and 95 %, where again the pruning impact is so grave,
that the model outputs noise-like signals and the difference
in VSTOI scores is meaningless. The benefit of the proposed
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Fig. 3. VSTOI scores of the baseline decoder-only pruning and the proposed
pruning method. Similar performance is achieved up to a pruning rate of 45 %.
Starting at 50 %, the proposed pruning method considerably outperforms the
baseline method.
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Fig. 4. VSTOI scores of the baseline decoder-only pruning and the proposed
pruning method. Similar performance is achieved up to a pruning rate of 45 %.
Starting at 50 %, the proposed pruning method considerably outperforms the
baseline method.

pruning methods is the largest for a pruning rate of 70 %. Fig.
4 compares post-pruning VSTOI scores across pruning rates
for the decoder-only pruning. Again, the proposed pruning
method proves considerably superior with little degredation
until a pruning rate of 60 %, compared to about 45 % for the
baseline method. Fig. 5 shows the post-pruning VSTOI scores
for the three investigated perturbation functions as well as the
baseline method for the whole-model case. Qualitatively, all
methods show identical performance, the baseline method is
outperformed by a considerable margin for either perturbation
function. However, there appears to be a slight edge for the
linear perturbation function, especially for the pruning rates
from 65 % to 75 %. Results are qualitatively identical for the
decoder-only case.

The presented advantage of the proposed pruning method
is not due to training for another 1000 epochs. Fig. 6 shows
VSTOI scores after training but before pruning for the pro-
posed pruning method and the whole-model pruning case. The
Figure includes the VSTOI score of the original, unpruned
model. Note, that the desired pruning rate affects the training
through Eq. 6. While model performance improved slightly
with respect to VSTOI scores for pruning rates below 40 %,
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Fig. 5. VSTOI scores for baseline magnitude-informed pruning as well
as the proposed pruning methods for the three investigated perturbation
functions. While all three functions achieve qualitatively similar results, linear
perturbation proves superior for pruning rates between 60 % and 80 %.
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Fig. 6. VSTOI scores after training, but before pruning, with the proposed
pruning-aware loss (whole-model). As reference, the performance of the
original model without pruning is included. After training, VSTOI scores
drop for pruning rates above 40 %, suggesting that the increased robustness
to pruning is not due to improved overall performance.

model performance actually decreased due to the additional
training. This shows that the model indeed becomes more
robust to pruning due to the proposed additional training step,
because, despite lower VSTOI scores before pruning, post-
pruning scores are superior for the proposed method.

Finally, Fig. 7 shows results after fine-tuning for the pro-
posed pruning method as well as the baseline pruning method
for the whole-model and decoder-only case. The performance
gap closes considerably, but remains substantial for whole-
model pruning between a pruning rate of 70 % to 85 %.
The largest difference in VSTOI scores of 0.039 is achieved
at a pruning rate of 85 %. As before, model performance
at a pruning rate of 90 % and 95 % is so poor that the
observed differences can not be used to reasonably compare
the investigated methods.

For decoder-only pruning, up to a pruning rate of 80 %,
VSTOI scores are almost identical. Surprisingly, despite the
gap before fine-tuning, for pruning rates between 65 % and
75 % (including), the baseline method achieves slightly supe-
rior VSTOI scores with a difference of at most 0.0017 for
a pruning rate of 75 %. Such a difference is not significant
regarding speech intelligibility and could likely arise due to
chance as the SPSA algorithm, due to its random perturbations,
can not guarantee identical optimization results.

IV. DISCUSSION

The impact of the pruning-aware loss is quite consider-
able: Comparing Fig. 6, which shows the VSTOI scores pre-
pruning, but after training with the pruning-aware loss, to
Fig. 5, reveals that – as hoped for – the pruning itself has
decreasing impact on model performance. The largest decrease
in model performance stems from the model decreasing its
own performance to achieve pruning robustness. The loss
in VSTOI score due to pruning is limited to -0.016 up to
a pruning rate of 75 %. Even then, pruning reduces model
performance by at most -0.085 at a pruning rate of 85 %
(whole-model), compared to -0.23 for the baseline method.
Any additional performance decrease of the proposed pruning
method is due to the training step prior to pruning.

The choice of the perturbation function has a considerable
impact and the perturbation function yielding most aggressive
weight perturbation during training allowed to achieve the best
results. Accordingly, it is likely that even more aggressive
perturbations could allow to achieve even better results. This
was partially – but not for all pruning rates – observed for a
root-square function. Parametrizing the perturbation function
though, e.g., monotonic interpolation, could allow to yield
optimal pruning-aware loss function.

The benefit of the pruning-aware loss appears to increase
with increasing pruning rate until the impact of pruning
becomes so grave that the model cannot approximate a reason-
able compression algorithm anymore. Therefore, the proposed
method should be investigated using larger networks to fully
evaluate its potential.

Using the magnitude-informed pruning direction ∆ω in
Eq. 6 appears to be a natural choice, especially due to
the simplicity of its calculation. While it is conceivable to
use other pruning-directions, like gradient-informed pruning
directions, because the network reconfigures itself to be robust
to the chosen direction, there seems to be no obvious reason,
why a certain direction should be better than another.

The publication most similar to our work appears to be a
previous work of our own [16]. There, a hessian-related term
was introduced into the loss function to train a network to
be robust towards weight quantization (and perturbations in
general). The method proved to be very effective for quanti-
zation and to a lesser degree for pruning. However, in contrast
to the proposed method of this work, the computational
complexity of the method presented in [16] is significantly
larger, due to the need of computing the hessian of the loss
function. Therefore, for pruning, the proposed pruning-aware
loss method of this work is considerable superior.

V. CONCLUSION

This work proposed and investigated a novel pruning
method for the pruning of artificial neural networks in the
context of the compression of the stimulation patterns of
cochlear implants. A pruning-aware loss is proposed to auto-
matically achieve pruning-robust networks after training. The
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Fig. 7. VSTOI scores after pruning and subsequent fine-tuning for whole-
model and decoder-only pruning.



proposed method does make no assumptions regarding model
architecture.

The evaluation showed improvements in post-pruning per-
formance due to the proposed pruning method, with lit-
tle degradation in vocoder short-time objective intelligibility
scores (VSTOI scores) up to pruning rates of about 40 % for
whole-model pruning and about 65 % for decoder-only prun-
ing. The proposed pruning-aware loss yields substantial gains
in VSTOI scores after pruning compared to the magnitude-
informed baseline for pruning rates above 45 %.

This gap in performance mostly remained, but decreased
considerably after fine-tuning. Nevertheless, the proposed
method achieved considerably higher VSTOI scores for prun-
ing rates exceeding pruning rates of 70 % (whole-model) and
80 % (decoder-only).
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