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Abstract. A robust linear method for auto-calibration of a moving camera from
image sequences is presented. Known techniques for auto-calibration have prob-
lems with critical motion sequences or biased estimates. The proposed approach
uses known linear equations that are weighted by variable factors. Experiments
show, that this modification reduces problems with critical motion sequences and
that the estimates are not biased. Therefore, the proposed approach is more robust
and achieves a higher estimation accuracy.

1 Introduction

Estimation of camera motion and structure of rigid objects using camera images from
multiple views is a common task in computer vision and of interest for many applica-
tions. This paper considers the case where the camera performs a translational as well
as rotational motion.

For the estimation of the camera motion the real camera is represented by a para-
metric model, which describes the mapping of the observed three-dimensional rigid
objects in the two-dimensional image plane of the camera. The parameters of the cam-
era model can be divided into internal and external camera parameters. External camera
parameters describe the position and orientation of the camera in space. Internal cam-
era parameters describe aspects of mapping, e.g. the focal length or the position of the
principal point. If the internal camera parameters are known, the camera is calibrated.
If the camera is not calibrated, it can be described by the projective camera model. The
parameters of the projective camera model are combinations of internal and external
camera parameters [4, 5, 2].

In order to estimate the parameters of the projective camera model most approaches
establish corresponding feature points in the images. During the estimation of the cam-
era parameters, 3D object points are estimated simultaneously. The resulting recon-
struction of projective camera views and object points is determined only up to a global
projective transformation. This is sufficient for some applications, for example the syn-
thesis of new views [1]. However, in most applications, the projective reconstruction
must be transferred into a metric reconstruction. Therefore, the unknown global pro-
jective transformation is reduced to an unknown global metric transformation, which



corresponds to a determination of the internal camera parameters and the plane at in-
finity. Their automatic determination from the parameters of the projective camera is
calledauto-calibration.

Early publications assumed that the internal camera parameters are constant over the
image sequence. In 1992 Maybank and Faugeras [12, 3] used the equations of Kruppa
[10]. The method was developed further [8, 22, 11]. In 1997 Triggs [21] presented the
Absolute Dual Quadric(ADQ), which was later used by Pollefeys et al. [17, 14, 15]
for auto-calibration with variable internal camera parameters. An alternative approach
first determines the plane at infinity and afterwards the internal camera parameters. The
search range for the plane at infinity in the projective space can be limited by the fact
that all observed object points must be located in front of the camera [6, 7, 16, 13].

Our approach is a modification of the linear ADQ approach by Pollefeys et al.
In [15] Pollefeys et al. weight the linear equations by the reciprocal of the assumed
standard deviations of the internal camera parameters. This incorporation of a priori
knowledge reduces the problem with critical motion sequences [20, 9, 19]. However,
constraining all internal parameters with fixed weights causes biased estimates, even if
it is not necessary, e.g. in cases of sequences without critical motion.

In this paper we try to overcome this disadvantage by introducing linear estimation
with variable weights instead of fixed weights.

The following Section briefly reviews Pollefeys’ approach with fixed weights. In
Section 3 the proposed approach with variable weights is presented. Chapter 4 compares
results of the different approaches and conclusions are drawn in Section 5.

2 Linear Auto-Calibration using the Absolute Dual Quadric

Starting point of the auto-calibration algorithm is a projective reconstruction withk =
1 . . .K projective camera views given by the3× 4 camera matricesAk andj = 1 . . . J
object points given by the 4-vectorsPj in homogeneous coordinates.

Auto-calibration determines the projective4 × 4 matrix T, that transforms the pro-
jective cameraAk into a metric cameraAM

k :

AM
k = Ak T ∀ k (1)

and the object pointsPj of the projective reconstruction into metric object pointsPM
j :

PM
j = T Pj ∀ j . (2)

Whereby a metric camera matrix can be factorized as follows:

AM = K R [ I | −C ] . (3)

The3× 3 rotation matrixR represents the orientation and the 3-vectorC represents the
position of the camera.K is the calibration matrix with

K =

f s cx

0 r f cy

0 0 1

 , (4)



wheref is the focal length,(cx, cy)> is the principal point offset from the image center,
r is the aspect ratio of pixels ands is the skew parameter. The skews of a real camera
is known to be zero. Furthermore, we assume, that the aspect ratior is known.

In order to determineT, the ADQQ∗∞ is estimated by solving the following auto-
calibration equation for all camera viewsk:

Ak Q∗∞ A>k ∼ Kk K>k = ω∗k ∀ k , (5)

whereQ∗∞ is a4× 4 matrix with rank 3. The3× 3 matrixω∗k represents the dual image
of the absolute conic (see [5] for details).

In the first step of the linear estimation algorithm the camera matrices are normal-
ized

A′k = K−1
N Ak (6)

with

KN = diag
[

Nx + Ny,
1
r
(Nx + Ny), 1

]
, (7)

whereNx is the width andNy is the height of the camera image. Consequently, the
normalized auto-calibration equation is

A′k Q∗∞ A′>k ∼ K−1
N Kk K>k K

−>
N = ω′∗k ∀ k . (8)

After the normalization step the focal length of the normalized camera isf ′ ≈ 1 and the
principal point offset(c′x, c′y)> ≈ (0, 0)>. Pollefeys assumes the standard deviations
of the unknown normalized parameters to

f ′ ≈ 1± 3 (9)

c′x ≈ 0± 0.1 (10)

c′y ≈ 0± 0.1 . (11)

From Eq. (8) follows:

ω′∗k =

f ′2 + c′2x c′x c′y c′x
c′x c′y f ′2 + c′2x c′y
c′x c′y 1

 ≈
1± 9.01 ±0.01 ±0.1
±0.01 1± 9.01 ±0.1
±0.1 ±0.1 1

 . (12)

The symmetrical4× 4 matrix of the ADQ can be parameterized with 10 elements:

Q∗∞ =


q1 q2 q3 q4

q2 q5 q6 q7

q3 q6 q8 q9

q4 q7 q9 q10

 . (13)

In order to estimate the elements ofQ∗, for each camera view 6 linear equations from
the following 6 conditions can be derived. Each linear equation is weighted according
to its assumed standard deviations from Eq. (12):



ω′∗12 = 0 ⇒ 1
0.01 (a′1 Q∗∞ a′>2 )= 0 (14)

ω′∗13 = 0 ⇒ 1
0.1 (a′1 Q∗∞ a′>3 )= 0 (15)

ω′∗23 = 0 ⇒ 1
0.1 (a′2 Q∗∞ a′>3 )= 0 (16)

ω′∗11 = ω′∗22 ⇒ 1
0.2 (a′1 Q∗∞ a′>1 − a′2 Q∗∞ a′>2 )= 0 (17)

ω′∗11 = ω′∗33 ⇒ 1
9.01 (a′1 Q∗∞ a′>1 − a′3 Q∗∞ a′>3 )= 0 (18)

ω′∗22 = ω′∗33 ⇒ 1
9.01 (a′2 Q∗∞ a′>2 − a′3 Q∗∞ a′>3 )= 0 , (19)

wherea′1,a
′
2,a

′
3 are the rows of the normalized camera matrixA′.

If the number of camera views is at least 3, an over-determined linear set of equa-
tions for the elements ofQ∗∞ can be generated, which is solved by singular value de-
composition [18]. The searched transformationT can be determined by a singular value
decomposition ofQ∗∞:

Q∗∞ = U diag[w1, w2, w3, w4] V> (20)

T = [U3 diag[
√

w1,
√

w2,
√

w3] | (0, 0, 0, 1)>] ,

where the columns of the4 × 3 matrix U3 are those three columns of the4 × 4 matrix
U, which do not correspond to the smallest singular valuew4.

3 Linear Auto-Calibration with Variable Weights

In order to improve the above algorithm, we propose to use variable weights for Eqs. (18)
and (19) instead of the fixed values:

Eq. (18) ⇒ 1
β (a′1 Q∗∞ a′>1 − a′3 Q∗∞ a′>3 )= 0 (21)

Eq. (19) ⇒ 1
β (a′2 Q∗∞ a′>2 − a′3 Q∗∞ a′>3 )= 0 (22)

with

β = 0.1 e(0.3 n) . (23)

The modified linear algorithm is executedN = 50 times withn = 0 to (N − 1).
By alteringβ exponentially, it is possible to cover a wide range of weights. Ifn =

0 ⇒ β = 0.1, and therefore Eqs. (21) and (22) are considered approximately as much
as Eqs. (15)-(17) in the linear equation set. Ifn = 49 ⇒ β = 242174.76, and the
influence of Eqs. (21) and (22) is negligible.

Changing the weight of Eqs. (18) and (19) correspond to changing the assumed
standard deviation of the normalized focal lengthf ′ in Eq. (9). Another possibility
would be to alter the weights of Eqs. (14) to (17), which would correspond to a change
of the assumed standard deviation of the principal point offset in Eqs. (9) and (10).
However, this would yield the same results, because the result of the equation set is
not changed by a global scale and therefore only the ratio of the assumed standard
deviations is important.



Since the modified linear algorithm is executed 50 times with different weights,
there are 50 possible solutions forT . Each solution is evaluated by the non-linear cost
function, which is proposed by Nistér [13]:

φ =
∑

k

s(AkT)2 + cx(AkT)2 + cy(AkT)2 + (r(AkT)− r)2

f(Ak T)2
(24)

where the functionss(.), cx(.), cy(.), r(.) andf(.) extract respectively the parameters
skew, principal point offset in x- and y-direction, pixel aspect ratio and focal length from
the camera matrix by QR-decomposition [18]. Finally, the solution with the smallest
costφ is selected.

4 Results

4.1 Synthetic Data Experiments

In this subsection two experiments with synthetically generated input data are pre-
sented. The first experiment simulates a critical camera motion, that is close to a de-
generated case, and the second experiment simulates a non-critical camera motion.

For each experiment 500 synthetic test sequences with random scenes are gener-
ated. The random scenes consist of 6000 3D object points, which have a distance from
the camera between36 and72 mm. Each test sequence consists of 10 images. Approx-
imately 160 to 170 of the object points are visible in each camera image. The errors
in the positions of the generated 2D image feature points obey an isotropic Gaussian
distribution with standard deviationσ. The camera image has720 × 576 pixel and a
physical size of7.68×5.76 mm, thus the pixel aspect ratio is1.06667. The focal length
is10.74 mm. Principle point offset and skew of the camera are zero. All intrinsic camera
parameters are kept constant over the sequence.

In experiment 1 translation and rotation between two successive views are very
small (see Tab. 1).

Translation [mm] Rotation [deg]
X = 0.25 pan = −0.05

Exp. 1 Y = 0.0 tilt = −0.075
Z = 0.05 roll = 0.005

X = 2.0 pan = −2.0
Exp. 2 Y = 0.0 tilt = −0.5

Z = 1.0 roll = 0.05

Table 1.Camera motion between two successive views for experiment 1 and 2

Fig. 1 shows the results of experiment 1 for five different standard deviationsσ of
the position errors of generated 2D feature points. The mean and the standard deviation
of the estimation results for all intrinsic camera parameters are plotted. Three different



approaches for linear auto-calibration using the ADQ are compared: (#1) The approach
with fixed weights described in Sec. 2, (#2) the classical approach that does not weight
its linear equations and builds its equation set only with Eqs. 14-17, and (#3) the pro-
posed approach with variable weights.

From Fig. 1a the disadvantage of the approach (#1) with fixed weights is evident.
The estimation results for the focal length are pulled to the assumed value of

Nx + Ny = (720 + 576) pixel (25)

= (7.68 + 5.76) mm = 13.44 mm

by Eqs. (18) and (19). Consequentially, the estimation is biased.
On the other hand, ifσ is high, approach (#1) gives much better results for all in-

trinsic parameters (Fig. 1a-e) than approach (#2). The higher robustness against critical
camera motions of approach (#1) is due to the additional equations 18 and 19, which are
not used by approach (#2). The proposed approach (#3) with variable weights always
performs best.

In experiment 2 translation and rotation between two successive views is large and
not close to a critical camera motion (see Tab. 1). Thus, the classical approach (#2) gives
good estimation results (Fig. 2). Therefore, the biased estimation results of approach
(#1) are unnecessary in this case. In contrast, the estimation results of the proposed
approach (#3) with variable weights are as good as the results of approach (#2).

4.2 Natural Image Sequences

The proposed linear auto-calibration approach has also demonstrated to work well on
natural image sequences taken by a moving camera. Results of augmented image se-
quences that have been calibrated using the technique described in this paper are illus-
trated in Fig. 3. Videos of these augmented image sequences and executables of our
non-commercial camera tracker can be found on our website1.

5 Conclusion

As shown by the experiments the proposed linear auto-calibration approach has nearly
no estimation bias and reduces the problem with critical motion sequences. Therefore,
it is more robust and achieves an overall higher estimation accuracy than existing ap-
proaches.

A slight disadvantage of the proposed approach is its approximatelyN = 50 times
higher computational effort. In practice however, this causes no problem, because the
computational effort of the linear auto-calibration is small compared to the effort for
feature tracking, outlier elimination and estimation of a projective reconstruction. Nev-
ertheless, in future work, it can be tried to reduceN , e.g. by a more explicit detection
of critical camera motions.

1 http://www.digilab.uni-hannover.de
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Fig. 1. Results of experiment 1 (critical camera motion): Fig. a)-e) show the ground truth and
estimation results of the different approaches for all 5 intrinsic camera parameters over 5 different
standard deviations of the position errors of generated 2D feature points. The small symbols mark
the mean and the errorbars indicate the standard deviation of the estimation results over 500
random trials.
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Fig. 3.Examples of augmented image sequences.


