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Abstract Local optimization and filtering have been widely computational cost, many applications require a general so-
applied to model-based 3D human motion capture. Globdltion without imposing strong assumptions on the dynam-
stochastic optimization has recently been proposed as proniis- and the appearance of the human, i.e. neither motion
ing alternative solution for tracking and initialization. In or- patterns nor clothing are known a-priori. Nonetheless, the
der to benefit from optimization and filtering, we introduce use of prior poses or motion patterns learned from a motion
a multi-layer framework that combines stochastic optimiza-database has become very popular in order to achieve ro-
tion, filtering, and local optimization. While the first layer bust tracking also in difficult and ambiguous scenarios [41,
relies on interacting simulated annealing and some wea46,52]. In [1] the pose is directly recovered from silhouettes
prior information on physical constraints, the second layeby learning the mapping between silhouettes and markers.
refines the estimates by filtering and local optimization sucltaussian process dynamical models [35,51] have been used
that the accuracy is increased and ambiguities are resolvédr embedding motion in a low-dimensional latent space.
over time without imposing restrictions on the dynamics.Although these learning strategies allow for tracking even
In our experimental evaluation, we demonstrate the signifin monocular video sequences, they impose strong assump-
icant improvements of the multi-layer framework and pro-tions on the tracked motion. The restriction to a small subset
vide quantitative 3D pose tracking results for the completef human motion patterns limits their application in practice.
HumanEva-II dataset. The paper further comprises a comWhen, for example, the movement of a person with an arti-
parison of global stochastic optimization with patrticle filter- ficial hip joint is measured using training data from persons
ing, annealed particle filtering, and local optimization. with natural hip joints, the estimates are likely to be biased
towards the movement of a person with natural hip joints,
i.e., one eliminates exactly the information that is important
for the medical application. Hence, in the present paper, we
will focus on a tracking system that allows for robust and
accurate tracking without relying on strong motion priors.
Another kind of prior knowledge frequently used in hu-
The 3D reconstruction of human motion from multi-view Man tracking is a surface model with an underlying skele-
video sequences has applications in many areas includirf§n: S€€ €.9. [27] or the survey [34]. These so-called model-
computer graphics, biomechanics, medicine, and sport scRased approaches estimate the position, rotation, and joint

ence, see e.g. [44]. Besides robustness, accuracy, and IGgnfiguration (pose) of the human model for each frame,
where the large number of degrees of freedom (DoF) re-
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1 Introduction




main contribution of the present paper is therefore a multiSminchisescu and Triggs [49] propose covariance scaled sam-
layer framework that employs the basic ideas of all threeling to guide the particles to the local maxima of a pos-
concepts. terior distribution. To find the local maxima, the particles
are broadly spread in the search space by inflating the co-
variance of the dynamic prior and refined by a local opti-
mization with respect to the likelihood. The posterior is then
modeled by a mixture of Gaussians where the means and

A stochastic global optimization approach, called Interact'covariance matrices are given by the detected local maxima

ing simulated annealing (ISA) [23], has recently been PT9%nd their Hessians. Smart particle filtering [7] combines a

posed for human mot!on ga_pture [22].' Since 't. searc he.s fo['3artic|e filter with stochastic meta descent [45] for local op-
the globally best solution, it is also suitable for initialization

f model-based hes 1241 Its ability t ¢ timization. Since the optimization of the particles changes
of model-based approaches [24]. Its ability to recover "OMhe approximated distribution, a correction factor is used to

errors and its precise estimates satisfy the requirements f%E)mpensate for the additional set of particles. The correc-

flon factor, however, depends on the unknown distribution

_I_-|ow§ver v_vhen the e:stmates_are observed over tme, SOMitrer prediction. Hence, a regularization [20, Chapter 12],
jitter is noticeable which is typical for stochastic approache%vhich introduces an error, is performed to estimate the con-

like ISA that sample from a distribution of interest. Vari- tinuous distribution from the finite set of particles before

ations between estimates of two frames might also OCCUf e optimization step. Particularly, the low number of parti-

when the tracker recovers from an a.mb|guny n t.he. PreVIties prevents an accurate estimation of the correction factor.
ous frame. Moreover, while stochastic global optimization

id timat I to the alobal obfi . Deutscher et al. propose an annealed particle filter [17,18]
provides estimates close 1o the global oplimum In reasofy, . o) 10\ys the idea of annealing to guide the particles to the

gble timg, the ratio between aceuracy aﬂd computation co fobal maximum of the likelihood. To this end, the shape
is unsatisfactory when more precise estimates are require f the likelihood is gradually changed and the sampling is

as we will show. repeated. The approach does not perform annealing in the
classical sense where the temperature is monotonically de-
1.2 Filtering/Smoothing creased, but relies on the fluctuating survival rate of the par-
ticles. Hence, the annealed patrticle filter is not suitable for
Filtering approaches estimate the unknown true stdtem  global optimization and requires an additional technique for
some noisy observations, e.g. images. In general, the esti- initialization like other approaches that combine local opti-
mation is called prediction, filtering, or smoothing if obser- mization with particle filtering. Although it has been shown
vations before framg includingt, or also aftet are taken that these heuristics work well for tracking hands or humans,
into account. The filtering problem is typically solved by there is no evidence that they converge to the optimal solu-
Kalman filtering [31] or particle filtering [20] where it is as- tion of the filtering problem stated in Equations (1) and (2)

1.1 Global Optimization

sumed that the underlying stochastic processes in contrast to Kalman or particle filtering.
X1 = ft (%) +, 1)
Yo = he (%) + W )

1.3 Local Optimization
with noisev; andw; are known. Isard and Blake [28] applied
a particle filter to 2D tracking and extended it to a two-pasd.ocal optimization has been widely used for 3D human mo-
smoothing algorithm [29]. For 3D human motion capture,tion capture [9,14,25,26,30,32,37]. It provides very accu-
particle filters were combined with Markov chains, calledrate results provided that the state vector is initialized near
Hybrid Monte Carlo filter [15], and graphical models, calledthe global optimum. Since it searches only for the locally
nonparametric belief propagation [33,47]. In [8] a Kalmanbest solution, it usually cannot recover from errors and re-
filter was used to model the human dynamics by multiplequires an initialization. Without additional prior informa-
abstraction levels. Even though filtering approaches explotion, the tracking often fails in case of fast motions and
temporal coherence, handle noise and are able to recovembiguities. The optimization for pose estimation has re-
from errors, they are usually too imprecise for motion anal-cently been coupled with level-set segmentation [12,42] and
ysis in high dimensional spaces. Since accurate models fgraph-cut segmentation [6] where the estimated pose serves
f andh; are rarely available, the model's weakness is comas shape prior for segmentation. Even though the shape prior
pensated by overestimating the noise vectpesxdw; atthe  vyields better segmentation results and can be applied more
expense of poor performance. generally than background subtraction, it introduces a local
For this reason, some heuristics based on particle filterrm for energy minimization that depends on the previous
were developed to combine local optimization with filtering. estimate. Hence, these approaches are not able to recover



corrupted by noise due to sampling and the unsteady quality
of the image features. Besides the missing temporal consis-
tency, some bias might have been introduced by the weak
. prior.

t The second layer refines the estimate with a short delay
””””””””””””””””””””””””””” of d > 0 frames, where the estimate is filtered or smoothed
Layer 2 Y (Section 4). Although the smoothing reduces the jitter from
Filtering/ the stochastic global optimization by introducing temporal
Smoothing . i .

consistency, it improves only slightly the accuracy of the
estimate. The latter is achieved by local optimization and
Local segmentation where the smoothed estimate for frasmd
Optimization [ serves as initial pose for optimization and as shape prior for
the level-set segmentation (Section 5). The additional local
) _ _ _ _ segmentation improves the quality of the silhouettes of the
Fig. 1 A multi-layer framework for tracking. While the first layer .. . . . .
based on global stochastic optimization provides robust and relativel rst layer, which are obtained by global segmentation like
accurate estimates, the second layer increases the accuracy and red@@§kground subtraction and often contain severe artifacts
jitter and potential bias from the first layer with a short deday like shadows and holes. Since both segmentation and local
optimization are initialized by good estimates from the first

. . . layer for each frame, an error accumulation due to the shape
from errors since a wrong estimate results in a wrong shape= . .

. . prior is prevented. We show that the second layer consisting
prior and a wrong segmentation for the next frame.

. . of smoothing, local optimization, and local segmentation not
The idea of several layers has been used for tracking-by- | . -

) . only increases the accuracy, but also reduces jitter and po-
detection approaches [21,40] which rely on a learned tem-

. L o ential bias from the first layer.
plate model. Since the detection is usually limited to canon- . L .
ical poses like lateral walking, the human poses are only Indeed, qurexperlmental evaluatlop In Section 6 demqn-
detected on a subset of frames. A second step is thereford &S .the |mprov§ments of the mth-Igyer framework n
required to interpolate or track between the detected frame§OMmparison to an _mc_rea_sed number of |tera_t|ons and sam-
While the tracking is usually done offline since the detected)Ies for global optimization. It further comprises a quanti-

poses are used to learn a subject specific appearance mo&gﬂve error analysis using thieimanEva-II dataset [48],

our framework processes the image data online or with here we also compare interacting simulated annealing with
particle filtering, annealed particle filtering, and local opti-

mization.

Layer 1

Global
Optimization

Pose _y-—

very short delay.

1.4 Overview and Contribution
In this work, we propose a model-based approach for 3[; Image processing

human motion capture that meets important needs of mol— -1 ¢ K alobal and local ootimizati
tion analysis since it does not rely on prior knowledge of n our multi-layer framework, global and local optimization

e applied to the same images, see Figure 1. Hence, the
Images need to be processed once such that they are suit-
able for the appearance model used for global optimization

(Section 3.3.2) and the level-set segmentation in the sec-

While the first layer relies on global stochastic optimization,ond layer (Section 5.1). Both for segmentation and the ap-

the second layer refines the estimates by filtering and Ioczﬂelarance mog el gpo_d rers]ults are obtained .Wlth ':che FIE;?b
optimization as outlined in Figure 1. color space that mimics the human perception of color dif-

For the first layer, the images are processed and silhoderences. In order to reduce noise without smoothing over

ettes are extracted (Section 2). A recently developed stochat?-e edges that separate body parts and background, we ap-

tic global optimization technique, namely interacting simu-ply the edge-enhancing diffusivity function [13]

lated annealing, initializes the tracker and estimates the pose

for each frame by minimizing an image-based energy func- g(|0uf?) = S (3)
tion, which relies on silhouettes and color, as well as some |Ou[P+¢

weak prior on physical constraints (Section 3). Although the

first layer provides a robust and relatively accurate estimateith € = 0.001 andp = 1.5, where the smoothing is effi-
of the human pose in the current frame, the estimate is stitiently implemented by the AOS scheme [53].

the dynamics. In order to increase the accuracy and resol
ambiguities over time without imposing restrictions on the
dynamics, we introduce a multi-layer framework that com-
bines global optimization, filtering, and local optimization.
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Fig. 2 Left: a) The triangles of the human model encode the bodyFig. 4 Two mutation operatorérom left to right: a) The left branch

parts.Right: b) Outline of the first layer. While the particle se¢’); ~ (red)and the right branctblue)are swapped) The left branci{red)
represents the distribution of the solution, the megévides asingle S reconstructed from the right brangiiue) by mirroring the first joint.

estimate for the pose. The pose for the next fracﬁj%j is predicted by

Gaussian process regression (GPR), and an additional mutation opera: . . . . o
tor spreads the particles in the search space. The pose is then estimatedinilar to particle filters, where the posterior distribution is
by stochastic optimization (ISA). The system is closed in the sensapproximated by so-called particleg, needs to be approxi-
that any uncertainty that arises from the prediction and estimation i?nated byn samplesq((i) with Weightsn<i> since an analytical

- pred (i) - : : o
preserved in terms Ay and (. )i- solution is usually not available. The approximate distribu-

tion .
e = Zl”(i>5x<i>v ()
i= k
e whereé denotes the Dirac measure, convergeggdas the
A @s o 05 1 4 @5 o 05 1 4 @5 o 05 i number of particles increases [36]. A single estimate for the
(@) (b) (© human pose from the set of particles is obtained by the mean

X= [ng(x)dxwhere the mean of rotations is computed ac-

Fig. 3 From left to right: a) Energy functionV with global mini- cording to [38]. The details of ISA are discussed in Sec-

mum at zerob) n;. ¢) The mass ofy concentrates around the global tion 3.2.

minimum ask increases. For a limited number of iterationg,s mul- During tracking the solution is represented by the set of
timodal. particles(x"); as outlined in Figure 2 b). Since the particles
approximate a distribution, uncertainties from the pose esti-
mation are propagated to the next frame making the estima-
tion robust to ambiguities. An additional mutation operator

) . . ; between two frames spreads the particles in the search space
The first layer of our tracking framework relies on inter- . red ) ) pred
where the predicted posg!3” and its confidenc&" are

i imul li ISA) [2 hich i lobal . ) L :
2tccflcnhga§tlir:l:)atti(:r(\jizaart]ir;?\at:ancghrgisug [S?;},CJVWE a;ssuamge ?Ezttaken into account, see Section 3.1. The initial pose is also
P que- c?etermined by ISA as described in Section 3.4.

3D skeletal model as shown in Figure 2 a) is available, the
pose can be represented by a vestaontaining the posi-
tion, orientation, and joint angles, where rotations are CON3 1 Mutation
verted to the axis-angle representation. For each frame, the

posex’is obtaingd by searching for thg glopal mini.mum of after estimating the pose, the particlesxfi) congregate

an energy functiol > 0, which is described in Section 3.3. 5rqnd the global optimum for franteSince this set is not
well distributed for estimating the pose in the next frame,

Instead of searching for a single estimatéSA approx-  a mutation step spreads the particles in the search space.

imates a distributiomy, whose mass concentrates in the re-For this purpose, the pose is predicted from the previous

gion of global minima of the energy functidhasktendsto  estimates by a 3rd order autoregression,ﬁﬁd = f(%3)

infinity, see Figure 3. This behavior is described by the folwherex;.; = (%,%_1,%_2) denotes the last three estimates.

lowing convergence theorem [36] saying thatforany 0 The functionf can be learned during tracking from the his-
tory of estimates given by the equations

lim n(V = sup{v=0;V >vae}+e)=0. (4) R_rp1=f(R_ra) for r=1...R (6)

3 Global Optimization



The regression is implemented by Gaussian processes (Gl ¢
[54] where the prediction is given by a Gaussian distribu-
tion with mean’’$® and covariance matrig”/s’. Since GP 50
regression provides a predictive distribution and works well £
for a small set of training data, it meets the needs for the firs £ 40
layer. 2
To simplify matters, we briefly summarize only the one- 30
dimensional prediction by Gaussian processes where the s
of training data is given byxg'= (%_1:3,...,%_r3)" and
f(%R) = (f(R_1:3), ..., f (% _r3))". The predictive distribu-
tion for the last three estimat&s;’is obtained by the condi-
tional Gaussian distributiop(%11|%:3, %R, f (Xr)) with mean
and variance

err
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Fig. 5 Impact of learning the motion model onlinErom left to

pred

— K(Rea. %) TK L (R , 7 right: a) To simulate the effect of a fast movement, only every 4th
K1 (R:3, %) (%e) (7) frame is used, i.e., the frame rate of the camera is reduced from 60 fps
(oﬂid)z = K(%:3,%:3) — K(%:3, )?R)TK *1k()“<t:37 %r). (8)  to15fps. Since the dynamics are learned online, it takes some frames

The covariance matrix for the training da€ais modeled by

until good estimates fo’’S® and £”$" are obtained. When the num-

ber of iterations for ISA remains unchanged, the error increases for the

first frames. After the motion model is learned, the error is comparable
to the 60 Hz sequencb) Estimated pose for frame 3 of the 15 Hz se-
guence(frame 10) c) After 5 frames at 15 H#frame 18) the motion
model is learned and the pose is well estimated.

the general covariance function

2
K(%r:3,%s3) = aOeXp<_; 'ZOaHl (Re—j —)A(sj)2>
J:
2
+ Z}ai+4f<rfjf(sfj + Goisedrs, ) The prediction by Gaussian process regression has two
1= advantages. When the movement is fast or the frame rate
where the hyperparametersando?;s.are learned offline  is low, X" guides some particles towards the next poten-
by minimizing the log likelihood as proposed in [54]. Due to tial pose such that less iterations are required for optimiza-
computational efficiency, all parameters of the search spad®n as illustrated in Figure 5. More important, however, is
are assumed to be independent yielding a one-dimensionﬁﬂid which spreads the particles in the search space before
prediction for each degree of freedom. optimization. Without the prediction, it would be necessary
Since the dynamics are learned online, the predictiono setztpﬁd manually but the optimal values depend on the
adapts to the current motion but it also might be corrupted bynotion and the frame rate. GPR provides this information
tracking errors in the past. Hence, we shift only 40% of thewhere the variance becomes larger for fast motions or a re-
particles according taﬂid, another 30% is kept as it is and duced frame rate. Note that we do not require a first order
30% are mutated. The mutation is motivated by evolutionaryviarkov process for the transitions as it is usually assumed
algorithms where a larger variety among a population helpfor filtering approaches. In our experiments, we have ob-
to recover from errors. We propose two human specific muserved that a 3rd order autoregression performs well for hu-
tation operators as illustrated in Figure 4. The first swapsnan motion whereas models with higher order improve only
two kinematic branches like the left and the right leg andmarginally the prediction.
helps to recover from ambiguous silhouettes which often oc-
cur when the legs are next to each other. The second is useful
when only one of two legs or arms is well estimated due to3 2 ISA
occlusions. In order to reconstruct its counterpart, we imi-
tate the behavior of humans to use their arms or legs to ballz

. T . . he optimization consists of a weighting, a selection, and
ance. For this purpose, the first joint of the kinematic branch Pt . ghting, .
a mutation step that are iterated several times. For each it-

is mirrored while the other joint angles remain unchanged., rationk, the distributionn, is approximated by the set of

Even though the mutated particles will be mostly rejectede . : : T
after the first iterations of the optimization, they support thepamcles, see Figure 6. The particles are initialized by the

. . . , mutation operator from Section 3.1 as illustrated in Figure 2.
tracker in recovering from errors. Finally, all particles are
propagated by a zero-mean Gaussian distribution with co-

. . . . (i)y
variance matrix proportional tﬁﬂid- Weighting Assuming that a set of particlgs, "’ )i—1..n

exists, each particle is weighted by the Boltzmann-Gibbs
1 The hyperparameters are learned from the sequences shown ineasure
) = exp(—ﬁkv <x|(('))) ,

rows 2-4 of Figure 8 in [25]. The sequences differ from the test se-

guences in motion, frame rate, and subject. (10)



(@) (b) (c) (d)

Fig. 6 The set of particles converges to the global minimum. The

weighted particles are shown for iteratidas 5, 10, 20, and 35, where  Fig. 7 From left to right: a) Template imagdy(x). b) Silhouette im-
particles with higher weights are brighter. agely. ¢) Smootheda-channeld) Smoothed-channel.

where i = (k+ 1) with b = 0.7 is an annealing scheme where the parametens, 7, andv control the influence of

that increases monotonically. After normalizing the weightshe three terms, namely silhouettes, appearance, and phys-

suchthaty; #l!) = 1, the weight indicates the probability that ical constraints that are explained in Sections 3.3.1, 3.3.2,

a particle is selected for the next step. and 3.3.3, respectively. The impact of the appearance term
Selection.In a first stage, particles are accepted withhas been evaluated in [22]. Throughout this paper, we use

probability z() /max z(), i.e. the particle with the highest the recommended parameters: 2, T = 40, andv = 2.

weight is always accepted. Since after this first stage nly

particles are selected, additiomal m particles are drawn

in a second stage, replacing those from the old set. This

efficiently done by stratified resampling [19] using the nor- , .
malized weightst(). Due to the selection operation, similar N 0rder to model an error function between a particénd

particles with high weights are contained several times in th@ Silnouette image, extracted by background subtraction, a

new set whereas particles with low weights might disappealiemplate imagdy(x) is ge_nerated by projecting the surface
completely. of the human model that is translated, rotated, and deformed

Mutation. In order to explore the search space, the pargccording to the particle as shown in Figure 7 a). The in-
ticles are spread out according to a Gaus$iamhose co- consistent areas between the silhouette and the template are

variance matrix is the sampling covariance matrix then measured for each vienby

%.3.1 Silhouettes

_ o L) )T Vo(X) = — & (% p) — h(p
Bo= % (,n D ETAICAELY ECEY 9= a3, PPl
spaled pyag =04, whereu[('is the averagel the iden- + 2|10 z lv(p) = Tu(x, )|, (13)
tity matrix, andp a small positive constant that ensures that 1] per?

the covariance does not become singular. The computational
cost is reduced by using a sparse matrix that takes only cowherel,(p) and T,(x, p) are the pixel values for a pixgl
relations of joints into account that belong to the same skeleand the sets of pixels inside the silhouettes are denoted by
ton branch. In general, the Gaussian distribution can be ra9 and T2(x). Since pixels that are far away from the sil-
placed by any distribution that satisfies the mixing condi-houette should be penalized more severely, a Chamfer dis-
tion to ensure the convergence on a bounded search spac&nce transform [5] is previously applied kpas shown in
see [23] or [36]. Figure 7 b). In the optimal case, the Chamfer distance trans-
For a comparison of different annealing schemes and pderm is also applied to the templaig(x), but this would
rameter settings for ISA, we refer to [23]. The optimal num-be very expansive since the transform needs to be computed
ber of iterations and particles is a trade-off between accuradyr each particle. Hence, we use only a constant value where
and computation cost, which is discussed in Section 6. pixels inside the silhouette are set to 0, as it is the case for
the distance transform, and pixels outside the silhouette have
a constant ‘distance’ to compensate for the differences be-
tween the error of the first and the second term of Equa-
tion (13). In our experiments, we have found that a value of
8 is a proper compensation factor. The energy tegm is
V(X) = VVsin(X) + TVapp(X) + 0VphysX),  (12)  finally defined as the average error of all views.

3.3 Energy

As energy function for global optimization, we use



3.3.2 Appearance

To obtain an appearance model that is robust to 3D ro
tations, we combine the pixel information from all views
to model the statistics of different body parts rather than
their separate projections to the images. Sincé thkannel
of the CIELab color space is very sensitive to illumination
changes, we use only thee andb-channel, see Figure 7.
Furthermore, we assume the image chanuagte be uncor-
related for efficiency reasons. Hence, the joint probability

density function for a body pagtcan be written as Fig. 8 Initialization. From left to right: a) The search space is
bounded by a cubeb) The initial set of particles is randomly dis-

. tributed around the center of the culm}.The pose is correctly ini-
ps(u) = |:| pSC(UC)‘ (14) tialized after 35 iterations. Intermediate steps are shown in Figure 6.

@) (b) (©

Instead of assuming a certain family of distribution func-

tions, we approximate the probabilitips. in a more gen-

eral manner by normalized histogram&° where we fixed

the number of bins t& = 64. BoosdX) — id Z K <XYI> ' (16)
In order to measure deviations of the appearance of a Lh h

particle x from the appearance model given biys%, the

particle’s appearande(5°) (x) is estimated by sampling from where thed-dimensional vectorg andy; contain only the

all views. For this purpose, the triangles of the human modgbint angles for the body part. The bandwidthis given

are used to encode the body parts of the projected surface g the maximum second nearest neighbor distance between

shown in Figure 2 a). Hence, a pixplthat belongs to a all training samples. Finally, we used less than 200 samples

body parts contributes for each channa to the histogram from different motions for modeling the physical constraints

H (%) (x). For histogram comparison, we choose the Bhatby

tacharya distance since it is also stable for empty bins in

contrast tgy 2-statistics or Kullback-Leibler divergence [39].

The total deviation is then measured according to (14) by

c K . Although the termVpnys is only a weak prior, it might still
o= Ws (s,0)i(s,C) phys
Vapp(X) = Z < Zl (1— kzl vV hi e (X)> » (15)  introduce some bias that is reduced by the second layer.
c= —

where the weightsys reflect the size of the body parts and
are determined during initialization, see Section 3.4. In gens 4 |nitialization
eral, the appearance model needs to be updated during track-

ing. However when the lighting conditions are controlled aszq finging the initial pose, ISA searches for the global min-
itis the case for th@umanEva-II dataset, an update is not j,um of the energy function defined in Equation (12) where
necessary. only the terms/ii, andVphysare used since the appearance

of the model is unknown a priori. To this end, the search
3.3.3 Physical Constraints space is bounded by a cube that is determined by the silhou-

ettes, where the intersections of the projection rays of the
Since human motion is subject to physical restrictions likesilhouettes’ bounding boxes are the corners of the cube [24].
anatomical constraints and self-intersections, the search cdine particles are then randomly distributed around the cen-
be focused on poses with higher probabilities by adding #&er of the cube and optimized by ISA, see Figure 8. Finally,
soft constraint to the energy function. For this purpose, théhe pose is refined by local optimization as discussed in Sec-
probability of a skeleton configuratioppese is estimated tion 5.2. After the poseq’is estimated for the first frame,
from a set of training sampleg taken from the CMU mo- the histogramdd(S° are generated by sampling from the
tion database [16]. Since self-intersections between the heathages as described in Section 3.3.2. During sampling, the
the upper body, and the lower body rarely occur, the sampleange of each feature channel is also determined and divided
sizeL can be reduced by regarding the probabilities for thento uniform bins. Furthermore, the weights in Equa-
three body parts, denoted pead ppbls’, andplsue’, as un-  tion (15) are given by the sample size for each body part
correlated. The probability for a body part is approximateds after normalizing such thgtows = 1.

by a Parzen-Rosenblatt estimator with a Gaussian k&mel

1
Vorysx) = — 51 (Phe2d00 pREEE 00 A (9)) . (17)
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Fig. 9 Impact of smoothingFrom left to right: a) The smoothing
reduces the jitter from global stochastic optimizatibpThe absolute
tracking error of the second layer with respect to the introduced dela:
d (Frames 2- 821 of sequence S4). The best result is achieved with a (@) (b) (©) (d)
delay of only 5 frames. This corresponds to a delay oh8fr a se-
guence with 60 fps. Fat = 0, the estimates are filtered without delay.

Fig. 10 From left to right: a) Silhouette from background subtrac-
tion. b) Estimate from global optimizatior) Silhouette from level-set
segmentationd) Improved estimate by local optimization. The right

4 Smoothing and left arms are better estimated.

Using the noisy mean estimatgs ffom global optimiza-

tion as observations instead of images, the filtering problenthe hyperparameters are learned offline as explained in Sec-

specified by Equations (1) and (2) is simplified such that tion 3.1. Since the correlation depends only on the temporal

becomes the identity map. In addition, for considering thejistance but not on the current Va|uetof(—1 needs to be

solutions of many frames for smoothing and not only a sincalculated only once for a fixed number of training d&ta

gle one, we formulate the filtering as a regression problemBasically the regression comes down to linear filtering with
As outlined in Figure 1, the second layer refines the esan asymmetric filter mask and the weights being learned

timatesx from global optimization with a short delay of from training data. Figure 9 shows the impactdfvhere

d > 0 frames by means of local optimization, as describedve useR = 10+ d.

later in Section 5. This yields more precise estimaie®%e | general, a Kalman or particle filter could also be used
propose to couple regression and local optimization. Havingyr smoothing. However, the parameters need to be learned
Restimates as well and we have not observed a significant improvement

" . when the smoothing is performed with only a short delay.
X Ry s X—d-1, R—dy -5 R (18) gisp Y Y

we seek the functiori that provides a smoothed version for

framet — d, i.e.x*M?°t= f(t —d). Since the refined values

X should have more impact in the regression than the valugs Local Optimization

%, we add a binary indicator variabieas additional dimen-

sion to the input spacé&.= 1 indicates that the estimate has After smoothing, the accuracy of the estimated pose is in-
been already refined. The regress$¢t, i) is then learned creased by local optimization. Since the silhouettes from

from the data background subtraction often contain severe artifacts like
shadows and holes, we improve the quality of the silhou-
X-r=ft-rl)forr=R...d-1 (19)  ettes by local segmentation before optimizing the pose, see
%—r = f(t—r,0) forr=d...0. (20)  Figure 10. The smoothed posg"?°"'serves both as shape

o o ) ~ prior for the segmentation and as initial estimate for local
Similar to the prediction in Section 3.1, we apply Gaussiamptimization.

process regression. Let= (t,i;) andtr := (t—R,...,t)T.
The smoothed estimate is then given by the mean

mooth T, -1
=k((t—d,1),tr)T K1 (tr), 21 ,
X (( ) tR) (t”) (21) 5.1 Local Segmentation

where the covariance matri« is modeled by
1 The silhouette of the human is extracted by a level-set seg-
K(t—r,t—s) =ag exp(2 (al (r— 5)2 +ap (ip_r — its)2>> mentation that dividgs the image into fore.- and background
where the contour is given by the zero-line of a level-set
+ Gﬁoiseérs. (22)  function®. As proposed in [43], the level-set functidnis



the minimum of the energy functional the error of a paifX/,x) is given by the norm of the per-
pendicular vector between the liheand the poini/

1T () > i = my [z, (26)

+9 / |OH(®)] dx+2 / (®—®0))?dx (23)  wherell denotes the projection from homogeneous coordi-

e e nates to non-homogeneous coordinates. Using the Taylor ap-
whereH is a regularized version of the Heaviside step funcproximation exg6&) ~ | + 6&, wherel denotes the identity
tion. The probability densities of the fore- and backgroundmatrix, Equation (25) can be linearized. Hence, the sought
p1 and py, are modeled by local Gaussian densities usingransformation is obtained by solving the linear least squares
the color channel&, a, andb that are assumed to be in- problem
dependent as in (14). While the first term maximizes the ) 2
likelihood, the second term, weighted by the fixed param- 1 : < 2\ L
eterd = 2, regulates the smoothness of the contour. The last 2 IZ HH ( <| +05+ 2 lei Ug') X‘) Xi—m
term penalizes deviations from the projected surface of the ) ) _
smoothed posg™*hgiven as level-set functioghy, where ~ 1-€- by solving a system of linear equations.

. . ) . . . th
the influence of the shape prior is controlled by the param- [N order to penalize strong deviations frofi'y°"and
eter A = 0.08. For minimizing (23), local optimization is t0 avoid an underdetermined system, we extend the linear

performed with gradient system by an additional equation

O (Xej = (6? ooth_ él) (28)
oh® =H'(® <|O flJrﬂdiV ())
K ( ) 9 P2 ||:|¢‘

+2M (P — D) (24)

E(d) = _./Q H(®)Inpy+ (1— H(®))In p2dx

; (27)
2

for each jointj, Whereéj is the previously estimated abso-
lute joint angle. The parameteris set relative to the num-
ber of correspondences to achieve a constant weighting for
each frame. In practice, we use= 0.2 |{(X;, )i }|. Since

the local optimization provides only a relative transforma-
tion, the refined posg_4 is obtained by applying the rel-
ative transformation to the previously estimated pose. We

smooth... ¢ ) ) . remark that the particular choice of the parameters for local
The pose¢’3™is finally refined by an iterated closest point segmentation and optimization influences only marginally

(ICP) approach. To this end, 2D-2D correspon_dences b&he results of the second layer. The values therefore remain
tween the zero-level b and<I>o(xtSL“§°”) are established by fixed in our experiments.

a closest point algorithm [55]. Since the points on the con-

tour of the projected surface &f™*""relate to 3D vertices

of the mesh, 3D-2D correspondences between the model agdexperiments

the image can be derived. According to ICP, the pose esti-

mation is performed iteratively where the set of corresponfor an experimental evaluation of the proposed multi-layer

dences is updated after each optimization until the pose coframework, we use thBumanEva-II dataset [48] that con-

verges to a local minimum. tains two sequences that were captured by 4 calibrated cam-
For estimating the pose, we seek for the relative transeras with resolution of 65& 490 pixels and 60 fps. The

formation that minimizes the error of given 3D-2D corre- ground truth has been obtained by a marker-based motion

spondences denoted by paip§,x) of homogeneous co- capture system that was synchronized with the cameras. The

ordinates. A suitable representation for local optimizatiorsequences show two different subjects S2 and S4 perform-

are twists@& [10] that express 3D rigid motions &8 =  ing the motions walking, jogging, and balancing. We use the

exp(6&). A joint j is modeled as zero-pitch screw around a3D surface mesh model that is available for subject S4 and

given axis, i.e., the joint motion depends only on the rotatiordoes not contain the clothing. Both sequences S2 and S4 are

angle6;. Hence, a transformation of a poiKton the limb  tracked with this model although the mesh model does not

anddy as initial estimate.

5.2 Pose Estimation

ki influenced byny, joints is given by fit subject S2 as shown in Figure 19. Furthermore, we re-
duced the number of triangles to 5000 and added a skeleton
X! = |\/|(9§)|\/|(elki (1))"'M(lei (nki>)xi’ (25) with 28 degrees of freedom to the mesh. Since not all 20

points of the 3D pose from the marker-based system relate
where the mapping, represents the order of the joints in the to joints of our mesh, we have used the first frame of each
kinematic chain. Since each 2D podefines a projection sequence to register the 3D markers of the ground-truth to
ray that can be represented agdRer lineL; = (nj,m) [50],  our mesh. In Figure 12, the registered markers are shown by
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Fig. 11 Comparison between filtering and optimization approaches.
Global stochastic optimization (ISA) provides the best estimates....
whereas the standard particle filter (PF) and local optimization (ICP)
perform poorly. The annealed particle filter (APF) performs better than ‘%!'
a combination of particle filtering with local optimization (PFICP) pro- _—
vided that the parameter for adaptive diffusion is well chosen. Other-
wise, the error for APF becomes very large. The detailed errors witl
standard deviations are listed in Table 1.

red dots and the joint locations by blue dots. For comput
ing the 2D and 3D error, we take the joint locations of the
model, if they are available. Otherwise we use the registereé
markers. Since the joint locations of subject S4 do not fit
subject S2, we have used only the registered markers for S2.

In order to register the 3D markers as accurately as possibkg. 12 Top: Absolute 3D errors for frames-2821 of sequence S4.

to the model, we have manually segmented the first fram¥hile the estimates of the particle filter (PF) are imprecise, local opti-
' ization (ICP) gets stuck in local minima. The annealed patrticle filter

and estimated the initial pose as_ descr'b_eq_ 'n_ Se_Ct'on 3'%f;\PF) contains two severe errors (L00mm) around frames 440 and

We remark that not only the tracking and initialization con-590 yielding a large standard deviation, see Table 1. Global stochastic

tribute to the overall error, but also the registration and theptimization (ISA) performs very well for the entire sequenBet-

marker-based system introduce some errors. Hence, the fi@m: Estimates for frame 580 by PF, ICP, APF, and IS left to
right). ICP fails to track the right arm and the legs are disarranged by

ported errors should be regarded only as upper bounds t APE

allow comparison of different approaches. The experiments

are split into two sections. While Section 6.1 compares fil-

tering approaches to optimization approaches, Section 6Zection 5.2 to the silhouettes obtained by background sub-
demonstrates the performance of the proposed multi-laygfaction, where the prior on physical constraints (16) is in-
framework. tegrated according to [11]. ISA, PF, and APF use the same
energy model defined in Section 3.3. For the particle filter,
we employ the weighting function (10) wiiy = 1. This is
6.1 Optimization vs. Filtering similar to the assumption that the likelihood is proportional
to a product of normal densities. The patrticles are predicted
We have compared interacting simulated annealing (ISA) tas described in Section 3.1 without using the mutation oper-
local optimization (ICP), a standard particle filter (PF) [20], ator since it is not supported by a filtering framework, i.e.,
a variant of the smart particle filter (PFICP) [7], and the50% of the particles are shifted according to the predicted
annealed patrticle filter (APF) [18]. The comparison is per-mean and the remaining 50% are directly selected. While
formed on the first 820 frames of sequence S4 using thESA and APF are executed with 250 particles and 15 iter-
absolute 3D error as measurement [48]. Since the grourations, which are called layers for APF, we set the number
truth is corrupted for the frames 298335, these frames of particles to 3750 for the particle filter to obtain the same
are neglected in the error analysis. For local optimizationcomputational cost. Though the smart particle filter as pro-
we apply the iterative closest point approach described iposed in [7] uses stochastic meta descent (SMD) [45] for

(a) PF (c) APF (d) ISA
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local optimization, any local optimization like ICP can be
used in principle. Since our ICP implementation is slower
than SMD, we use 16 particles for PFICP to achieve the
same computation time as PF according to [7]. Since nei
ther PF, APF, PFICP, nor ICP are suitable for initialization,
the initial pose is provided by ISA.

The errors are plotted in Figures 11 and 12. It shows tha S
the global stochastic optimization approach clearly outper
forms the local optimization and the particle filter. While
ICP gets stuck in local minima, the estimates of PF are im-
precise. The annealed particle filter performs better than th
standard patrticle filter but it still produces two severe errors
This is reflected in the standard deviation for APF given in 0
Table 1, which is large in comparison to ISA that performs
very well for the entire sequence. The result that APF per-

Fig. 13 The effect of a very fast movement is simulated by using only
every 4th frame of sequence S4 (frames&?1). This corresponds to

60fps

15fps

error (nm PF ICP_| PFICP | APF ISA a walking and running sequence recorded with 15 fps. While the error
avg 10461 | 6386 | 69.70 | 4415 | 3858 increases slightly by .88% to 4039mm for ISA, the error for APF
std dev 40.77 27.07 24.75 15.39 6.54 rises to 5763mmby 305%.

Table 1 Averages and standard deviations of the absolute tracking

error for frames 2- 821 of sequence S4. ISA shows clearly the best 4 9%

results where the standard deviation is significantly lower than for APF. .

50 50

forms better than PF seems to contradict the compariso
in [3] where only slightly better results were obtained by
APF. The outcome of APF, however, depends strongly or
the parameter for adaptive diffusion [18] which was not im-
plemented in the previous comparison. The errors for two
different settings, namely.® (APF*) and 02 (APF), are  Fig. 14 Absolute tracking error of global optimization for frames 2
plotted in Figure 11. PFICP does not necessary improv@21 of sequence S4. Large numbers of iterations and particles improve
ICP where the best result has been achieved with a Ve,ti)e estimates only ma_trginallly_rom Ief_tto right: a) Error_with respect
large window size for estimating the correction factor. Ap_to the number_of pa_rtlcles using 15 |ter_at|ob$Error with respect to
. ) . . o ™ the number of iterations using 250 particles.
proaches like PFICP are in general relatively inefficient since
the additional optimization step limits the number of parti-
cles such that a good approximation of a distribution is in-after 30 iterations the absolute error is still. B8nm For
feasible. Furthermore, a lot of computation time is wasted@omparison, an error of 3mmis obtained by 15 itera-
when the particles migrate to the same local minimum.  tions. This indicates that ISA provides estimates near the
The performance of APF and ISA on a very fast se-global optimum in reasonable time, but when more precise
guence has been evaluated by reducing the frame rate froestimates are required the ratio between accuracy and com-
60 fps to 15 fps. For the comparison shown in Figure 13, thgputation cost is unsatisfactory.
parameters for both algorithms are unchanged. While ISA
performs very well for 60 Hz and 15 Hz, the error for APF
increases by more than 30% when the speed is quadruplegl2 Multi-layer
It might be that the result of APF can be improved by op-
timizing the parameter for adaptive diffusion on 15 Hz butFor evaluating the performance of the proposed multi-layer
it is clear that the faster the motion is the more importanframework, the absolute 3D tracking errors are measured for
global optimization becomes. the entire sequence S4 that consists of 1257 frames. Fig-
Although the optimal numbers of particles and iterationsure 15 shows that the second layer increases the accuracy
for ISA are trade-offs between accuracy and computationf the estimates from the first layer, where 250 particles and
cost, Figure 14 shows that large numbers of iterations antl5 iterations are used for ISA and the second layer refines
particles improve the estimates only marginally. Indeed, théhe estimates with a delay of 5 frames. In particular, the
error drops until 200 particles and 15 iterations, howevetargest error around frame 380 is significantly reduced by

00 200 300 400 500 5 10 15 20 30
Number of particles Number of iterations

@ (b)
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Fig. 15 Absolute tracking error for the sequence S4 (frame4258). Fig. 16 A comparison of the average errors for the complete se-
The second layer reduces jitter and increases the accuracy of the eqjdences S2 and S4 shows the improvements of our multi-layer frame-
mates from the first layer. In particular, the largest error around framevork. The detailed errors with standard deviations are given in Tables 2
380 is significantly reduced by the second layer. and 3.

_ L 80¢
the second layer. This is reflected by the results given in Ta

ble 2, where the average error is reduced b@%band the
standard deviation by 22%. The second layer clearly pro- —

. . . . f €
vides more precise estimates, which cannot be achieved t £ 40
an increased number of particles and iterations inreasonab &
time; see Figure 14. Our current implementation requires © 20

76 seconds per frame for the first layer and 48 seconds p¢
frame for the second layer on a standard computer wherez ‘ ‘ ‘ ‘
ISA with 30 iterations would require 152 seconds per frame. 0" shoulder eloow  wrist hip  knee ankle

The errors and quantiles for individual joints are pro-
vided in Figure 17. The quantiles show that most joints, parfig. 17 Average errors and.025-quantiles for individual joints ob-
ticularly the knees, are very well estimated. It also reveal&ined by the multi-layer framework on the entire sequence S4. While

that the limb extremities, namely wrists and ankles, are mor@e knees are very well estimated, the error bars for_the limb extremities
such as wrists and ankles are larger than for other joints. The quantiles

difficult to track since hands and feet are relatively smallt he ankies indicate that the ankle joints are not well registered.
body parts. The lower quantiles indicate the registration er-
rors of the joint positions, particularly of the ankles. Since
the distances between the upper and lower quantiles for ttie Figure 16. Tables 2 and 3 reveal that the accuracy is pri-
wrists and ankles are similar, the larger error of the anklegharily increased by local optimization whereas smoothing
might be explained by the registration error. reduces the jitter, as indicated by the decreased standard de-
viation. The best results for the second layer were achieved
with a short delay of 5 frames as plotted in Figure 9. Even
Z\r/g’r mm 'éag’g;l Ll;?'ggmh Ll;'éochpt ng'z-%{erz without delay, the error is slightly reduced compared to ap-
std dev Y £09 508 253 plying only local optimization. The computation times are
listed in Table 4. For convenience, we also provide the error

Table 2 Averages and standard deviations of the absolute trackin@f the second layer in Table 5 when a particle filter approach
error for the complete sequence S4 (framesl258). The error of the  js used as first Iayer,

first layer using only global optimization is significantly reduced by the

second layer. Clearly, a coupling of smoothing and local optimization

provides more precise results than each of them alone.

error (mn) | Layerl | L1+Smooth | L1+LocOpt | L1+Layer2
avg 43.82 4144 39.20 37.53
std dev 10.65 9.67 10.05 9.00

We have also evaluated the impact of coupling local op-

timization and smoothing for the second layer, which pel,_'I'able 3 Averages and standard deviations of the absolute tracking
- error for the complete sequence S2 (frames1R02).
forms better than each of these steps alone. This is shown
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Table 4 Overall computation time on a standard PC for a frame with
4 images.

)

o

o)

(0]

k=)
error (mm) | PF+L2 | PFICP+L2| APF+L2 | ISA+L2 %
avg 82.70 58.38 37.26 3249 <
std dev 43.77 25.32 14.67 521

Table 5 Averages and standard deviations of the absolute tracking er
ror for frames 2- 821 of sequence S4. The second layer (L2) improves
the results for all sampling approaches. The results without the secon

200 300 400
layer are given in Table 1. t

We further applied the multi-layer framework to sequencs
S2 that consists of 1202 frames. Since we use the 3D surfa
mesh model of subject S4, the model does not fit subject Sz
see Figure 19. Nevertheless, competitive results are obtaine
even though the error is larger bynénthan for sequence
S4, see Tables 2 and 3. The increase of the error seems
be mainly caused by the wrong model since the camera se
ting and movement are very similar to S4. Particularly, the
elbow joints of the model are at the wrong position which
causes problems when the elbows are angled. This indicategy. 18 Biased estimatesTop: When the physical constraints are
that our approach would also work with a generic surfacenodeled by a strong prior, the estimates are biased towards the train-

model like the SCAPE model [2,4]. However, it also revealdnd data. For this example, only joint samples around zero have been
that th litv of th f hh ianifi ti Ltsed. Since the second layer does not make use of the prior, the bias is
althe quality of the surface mesh has a signincant IMpacgt g, ceqgottom: Biased estimate of the head by the first layeft).

on the accuracy of the estimates. The estimate of the second layer better fits the image datat).
The influence of a strong prior is demonstrated in Fig-

ure 18. To this end, we learned the physical constraints of the
head movement only by joint samples around zero. Whildéhan the absolute error. This indicates that the marker for
the estimates from the first layer are biased towards the traift€ pelvis joint has not been accurately registered to the sur-
ing data and do not fit the image data’ the second |ayer réace mesh model. In addition, some estimated human bOdy
duces the bias since it does not rely on the prior. We empPoses of the multi-layer framework are shown in Figures 19
phasize that the bias is not completely removed, since thand 20.
second layer is initialized by the estimates of the first layer,
but the example shows that the estimates of our multi-layer
framework better fit the image data. 7 Discussion

In order to allow comparison to other approaches that
have not been mentioned in this section, we provide variin this work, we have compared optimization and filtering
ous error metrics for the sequences S2 and S4 in Tablesdpproaches for model-based human motion capture that do
and 7. Each sequence is split into three sets, where the fingbt rely on prior knowledge on the dynamics. A quantitative
set contains only the walking motion, the second the walkerror analysis has revealed that a recently proposed stochas-
ing and jogging motion and the third set the entire sequenciic optimization technique (ISA) provides significantly bet-
consisting of walking, jogging, and balancing. The averagéer estimates than an iterative closest point approach, a stan-
errors and standard deviations are given for global stochaslard particle filter, a variant of the smart particle filter, or the
tic optimization (one layer) and the multi-layer framework annealed patrticle filter. While ISA provides robust and rela-
(two layers). The 2D errors are computed for cameras Clively accurate estimates of the human pose, an even higher
and C2. The relative error is computed with respect to therecision is only achieved at the expense of high compu-
pelvis joint. For a detailed description on the error metricstational cost. To address this problem, we have introduced
we refer to [48]. We remark that the relative error is highera multi-layer framework that combines the advantages of

ol
yi

(a) Layer 1 (b) Layer 2
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fLayers Dataset 3D (mm) 2D/C1 (pix) 2D/C2 (pix)
absolute relative absolute relative absolute relative
1 Setl (1-350) | 4150+7.98 | 4578+9.00 | 545+1.49 | 585+1.74 | 554+1.78 | 566+ 1.84
2 Setl (1-350) | 3223+5.71 334946.03 | 410+1.11 | 4244125 | 4.384+1.36 | 4.284-1.33
1 Set2 (1-700) | 450441285 | 4836+1368 | 5.79+1.89 | 6.04+2.04 | 6.07+2.35 | 6.22+2.41
2 Set2 (1-700) | 3586+10.73 | 37.62+1142 | 449+144 | 465+155 | 485+1.86 | 4.92+2.01
1 Set3 (I- 1202) | 43.82+10.65 | 4657+1144 | 561+157 | 589+1.71 | 5.95+1.91 | 6.14+1.96
2 Set3 (1-1202) | 37.53+9.00 39.364+:9.70 | 477+£1.25 | 4994134 | 5134155 | 5.2541.69

Table 6 3D and 2D errors for subject S2. Accurate results are obtained by our multi-layer framework although the sequence has been tracked

with a wrong surface mesh model, see Figure 19.

fLayers | Dataset (Frames 3D (mm) 2D/C1 (pix) 2DIC2 (pix)
absolute relative absolute relative absolute relative
1 Setl (2- 350) 34594463 | 4393+824 | 448+1.00 | 5.66+1.69 | 4.17+0.72 | 493+1.17
2 Setl (2—- 350) 27.65+2.96 | 3391+4.97 | 358+0.74 | 440+1.03 | 3.354+0.51 | 3.914+0.86
1 Set2 (2—-700) 38534+6.90 | 47.00+:10.60 | 5.14+1.30 | 6.224+1.90 | 5.014+1.38 | 5.704+-1.76
2 Set2 (2- 700) 32144542 | 37.31+6.55 | 434+£1.05 | 5.04+1.21 | 4.244+1.14 | 4.724+1.35
1 Set3 (2-1258) | 3807+5.84 | 4525+9.13 | 525+1.17 | 6.12+1.62 | 5.00+1.12 | 5.71+1.53
2 Set3 (2-1258) | 3201+4.53 | 36.01+579 | 4.424+0.92 | 499+1.04 | 430+093 | 471+1.10

Table 7 3D and 2D errors for subject S4. The frames 2985 are neglected since the ground truth is corrupted for these frames.

global stochastic optimization, local optimization, and fil- References

tering. While the first layer relies on ISA, the second layer
refines the estimates where filtering and local optimization L
are coupled. The second layer not only increases the accu-
racy, but also reduces jitter and potential bias from the first2.
layer. The latter is an important issue particularly in medical
applications. In practice, the two layers can be run in par-
allel such that the processing time is not increased. So far
real-time performance cannot be achieved, but we intend to
reduce the computation time further by exploiting the paral- 4-
lel structure of ISA and graphics hardware.
5.

Since the described approach is based on a fixed sur:
face model, its general applicability is still limited. Although
good results are obtained even with a wrong surface model,
we have demonstrated that the quality of the surface mesH-
has an impact on the accuracy of the estimates. A solution
to be investigated in future works might be to adapt a genericg
human model to the image data. The framework could also
be combined with motion priors which might be useful in
monocular scenarios. The multi-layer framework is appeal-
ing in this case, since the motion priors would reduce the

search space for ISA and the second layer would be nece¥0.

sary to reduce the bias introduced by the priors.
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