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Abstract. In this article we present the integration of 3-D shape knowledge into a variational model for level
set based image segmentation and contour based 3-D pose tracking. Given the surface model of an object that is
visible in the image of one or multiple cameras calibrated to the same world coordinate system, the object contour
extracted by the segmentation method is applied to estimate the 3-D pose parameters of the object. Vice-versa, the
surface model projected to the image plane helps in a top-down manner to improve the extraction of the contour.
While common alternative segmentation approaches, which integrate 2-D shape knowledge, face the problem that
an object can look very differently from various viewpoints, a 3-D free form model ensures that for each view the
model can fit the data in the image very well. Moreover, one additionally solves the problem of determining the
object’s pose in 3-D space. The performance is demonstrated by numerous experiments with a monocular and a
stereo camera system.
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1. Introduction in 3-D space given some sensor data, e.g., images from

one or multiple cameras.

Image segmentation and pose estimation are two prin-
cipal problems in computer vision. Segmentation de-
termines the location and shape of objects in the image
plane, thereby performing a significant abstraction step
from the raw pixel data to object regions. Pose estima-
tion, on the other hand, determines the pose of objects

Both tasks have been intensively investigated and a
lot of progress has been made in recent years, as shown
by many seminal papers and textbooks on segmenta-
tion (Geman and Geman, 1984; Blake and Zisserman,
1987; Kass et al., 1988; Mumford and Shah, 1989; Zhu
and Yuille, 1996; Shi and Malik, 2000; Leventon et al.,
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2000; Chan and Vese, 2001; Paragios and Deriche,
2002; Cremers et al., 2002) and pose estimation (Lowe,
1980, 1987; Grimson, 1990; Li, 1995; Aradjo et al.,
1998; Ma et al., 2003; Murray et al., 1994; Gallier,
2001; Faugeras, 1993; Blaschke, 1960; Vacchetti et al.,
2004; Lepetit and Fua, 2005). See also the theses
(Goddard, 1997; Rosenhahn, 2003) on pose estima-
tion. Nevertheless, both segmentation and pose esti-
mation still face severe difficulties, in particular in nat-
ural scenes. The reason for such difficulties is in most
cases a violation of model assumptions. In image seg-
mentation, for instance, the model usually assumes ho-
mogeneous (e.g. constant (Chan and Vese, 2001) or
smooth (Mumford and Shah, 1989)) object regions.
Due to noise, texture, shading, or occlusion, however,
this model is often not appropriate to delineate object
regions. A successful remedy is the statistical modeling
of regions and the supplement of additional informa-
tion, such as texture and motion, which greatly extends
the number of situations where image segmentation
can succeed (Zhu and Yuille, 1996; Malik et al., 2001;
Paragios and Deriche, 2002; Rousson et al., 2003). An-
other strategy is to impose additional constraints like
the restriction to a certain object shape. This introduc-
tion of shape priors into segmentation models has been
proposed in Leventon et al. (2000) and has been ex-
tended and modified in a large number of successive
works (Cremers et al., 2001; Rousson and Paragios,
2002; Cremers et al., 2002; Riklin-Raviv et al., 2004,
Cremers et al., 2004).

Also pose estimation, or the related task of pose
tracking, work very reliably and often even in real-time
when applied to controlled situations. In this paper, we
focus on 2D-3D pose tracking of a rigid body, i.e., we
seek a 3-D rigid motion that fits the model to some 2-D
image data.! The difficult part in this task is to reliably
match some 2-D features to their 3-D counterparts on
the model. Numerous different types of features have
been used in the past, e.g., lines (Beveridge, 1993),
viewpoint dependent point features, such as vertices,
t-junctions, cusps, three-tangent junctions, edge inflec-
tions, etc. (Kriegman et al., 1992), multi-part curve seg-
ments (Zerroug and Nevatia, 1996), and complete con-
tours (Drummond and Cipolla, 2000; Rosenhahn and
Sommer, 2004).

In this paper, we follow the concept of matching
the modeled object surface to the object contour(s)
extracted from one or multiple images by level set
segmentation. While segmentation and 2D-3D pose es-
timation have so far been investigated more or less in-

dependently from each other, the main contribution of
the present paper, is to formulate a joint energy func-
tional and a corresponding optimization scheme that
solves both tasks simultaneously.

From the segmentation perspective, our approach ex-
tends the above mentioned segmentation methods that
integrate 2-D prior knowledge. Compared to these ex-
isting methods, the 3-D model in our approach ensures
a good description of the model contour from arbitrary
viewpoints by directly taking the 3-D nature of most
real objects into account.

Moreover, from the perspective of pose tracking, our
method integrates the feature extraction step into the
pose estimation process, i.e., there is a feedback of the
pose result that helps to improve the features used for
matching, in our case the object contour.

While the coupling of segmentation and pose esti-
mation (registration) has already been investigated in
case of 2-D segmentation and 2-D shape models as well
as in case of volumetric segmentation and 3-D shape
models, e.g. (Yezzietal.,2001; Rousson et al., 2004), to
the best of our knowledge, we present here the first ap-
proach that integrates segmentation in the image plane
and pose estimation in 3-D. Compared to the previous
cases, this comes along with additional difficulties, as
the approach implies a projection as well as an inverse
projection to match the 3-D shape to 2-D image data
and vice-versa.” Related works on 2D-3D pose estima-
tion, on the other hand, either work on pre-computed
contours that are independent from the pose result
(Drummond and Cipolla, 2000; Rosenhahn, 2003), or
rely on simpler features such as edge maps and line
segments (Haag and Nagel, 1999; Marchand, 2001).

This paper comprises and extends an earlier work
presented on a conference (Brox et al., 2005). In com-
parison to this introduction of the basic idea, the present
paper contains a much more detailed description of the
approach, suggests a confidence measure in the cou-
pling of segmentation and pose estimation, and demon-
strates the generality of the method by means of addi-
tional experiments that rule out many alternative tech-
niques for solving the task.

Paper Organization. We start in the next section with
a review of the level set based image segmentation
model that provides the basis for our variational ap-
proach. The section further includes a region model
based on local statistics that aims at the handling of
inhomogeneous objects and backgrounds. Section 3
extends the variational segmentation model by an ad-
ditional term that integrates the 3-D surface and its
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pose parameters. The section describes step by step
the optimization procedure that yields the object con-
tour and the sought pose parameters. Experiments in
Section 4 demonstrate the performance of the proposed
technique and illustrate the conceptual difference to
other methods. The paper is concluded by a short sum-
mary in Section 5.

2. Image Segmentation

2.1. Level Set Formulation

Our method is based on variational image segmentation
with level sets (Dervieux and Thomasset, 1979; Osher
and Sethian, 1988; Caselles et al., 1993; Malladi et al.,
1995; Paragios and Deriche, 1999; Chan and Vese,
1999, 2001; Tsai et al., 2001; Paragios and Deriche,
2002). Level set formulations of the image segmenta-
tion problem have several advantages. One is the conve-
nient embedding of a 1-D curve into a 2-D, image-like
structure. This allows for a convenient and sound in-
teraction between constraints that are imposed on the
contour itself and constraints that act on the regions
separated by the contour. Moreover, the level set repre-
sentation yields the inherent capability to model topo-
logical changes. This can be an important issue, for
instance, when the object is partially occluded by an-
other object and is hence split into two parts.

In the prominent case of a two-phase segmentation, a
level set function ® € Q +— R splits the image domain
Q into two regions 2| and 2, with ®(x) > Oifx €
and ®(x) < 0if x € Q5. The zero-level line thus marks
the boundary between both regions, i.e., it represents
the object contour that is sought to be extracted.

Most works on level set segmentation focus on this
special case with two regions. It automatically rules
out overlapping or vacuum regions and therefore eases
implementation. Since the present paper is concerned
with the extraction of exactly one known object and its
pose, we will also restrict to two regions: the object and
the background. However, the reader can find numerous
works that extend the level set framework to multiple
regions in a more or less simple and efficient manner
(Zhao et al., 1996; Vese and Chan, 2002; Mansouri
et al., 2004; Brox and Weickert, 2005).

As an optimality criterion for contour extraction,
three constraints are imposed:

1. the data within each region should be similar
2. the data between regions should be dissimilar
3. the contour dividing the regions should be minimal

These model assumptions can be expressed by the fol-
lowing energy functional (Zhu and Yuille, 1996; Chan
and Vese, 2001; Paragios and Deriche, 2002):

E(®) = —/ (H(®)log p1 + (1 — H(®))log p) dx
Q

+v / |V H(®)| dx @2.1)
Q

where v > 0 is a weighting parameter between the
third and the two other constraints, and H(s) is a regu-
larized Heaviside function with limy_, . H(s) = O,
limg_ oo H(s) = 1, and H(0) = 0.5 (e.g. the error
function). It indicates to which region a pixel be-
longs. Minimizing the first two terms maximizes the
total a-posteriori probability given the probability den-
sities p; and p, of ; and 2, i.e., pixels are as-
signed to the most probable region according to the
Bayes rule. The third term minimizes the length of the
contour.

Energy minimization can be performed according to
the gradient descent equation

9,® H/(<I>)<1 Pl i (V(D )) 2.2)
= 0og — v div E— .
’ £ Vo

where H'(s) is the derivative of H(s) with respect to
its argument. Applying this evolution equation to some
initialization ®°, and given the probability densities p;,
the contour converges to the next local minimum for
the numerical evolution parameter t — oo.

2.2.  Region Statistics

A very important factor for the quality of the con-
tour extraction process is the way how the probabil-
ity densities p; and p, are modeled. This model de-
cides on what is considered as similar or dissimilar.
There are several possibilities of image cues to use for
the density model, for instance, gray value, color, tex-
ture (Sifakis et al., 2002; Paragios and Deriche, 2002;
Rousson et al., 2003), or motion (Cremers and Soatto,
2005). Moreover, there are various possibilities how to
model the probability densities given these image cues,
e.g., a Gaussian density with fixed standard deviation
(Chan and Vese, 2001), a full Gaussian density (Zhu
and Yuille, 1996; Rousson and Deriche, 2002), a gen-
eralized Laplacian (Heiler and Schnorr, 2005), or non-
parametric Parzen estimates (Kim et al., 2002; Rousson
et al., 2003; Kadir and Brady, 2003; Kim et al., 2005).
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For the segmentation here, we use the texture feature
space proposed in Brox and Weickert (2006), which
yields M = 5 feature channels /; for gray scale im-
ages, and M = 7 channels if color is available. The
color channels are considered in the CIELAB color
space. The texture features described in Brox and We-
ickert (2006) contain basically the same information as
the frequently used responses of Gabor filters, yet the
representation of this information is less redundant, so
4 feature channels substitute 12-64 Gabor responses.

The probability densities of the M feature channels
are assumed to be independent, thus the total probabil-
ity density comes down to

M
pi=[]pi) i=12 (2.3)
j=1

J

Though assuming independence of the probability den-
sities is only an approximation of the true densities, it
keeps the density model tractable. This has to be seen
particularly with regard to the fact that the densities
have to be estimated by means of a limited amount of
image data given.

Estimating both the probability densities p;;
and the region contour works according to the
expectation-maximization principle (Dempster et al.,
1997; McLachlan and Krishnan, 1997). Having the
level set function initialized with some partitioning
@Y, the probability densities in these regions can be
approximated. With the probability densities, on the
other hand, one can compute an update on the contour
according to (2.2), leading to a further update of the
probability densities, and so on. Since the process
converges to a local minimum, the initialization
matters. In order to attenuate the dependency on the
initialization, one can apply a continuation method in
a coarse-to-fine manner (Blake and Zisserman, 1987).

It has been shown in Rousson and Deriche (2002)
that in case of Gaussian densities, the expectation-
maximization procedure is equivalent to a gradient de-
scent in both the contour ® and the densities p;. For
other density models, the gradient descent contains ad-
ditional terms that are neglected by the expectation-
maximization procedure. In Heiler and Schnorr (2005)
it has been shown empirically for the Laplacian density
model that the influence of these higher order terms is
very small. In the appendix we show that for the lo-
cal region statistics described in the next section, the
influence of the additional term is restricted, too.

2.3.  Local Region Statistics

While most image segmentation methods assume a
global model for the probability density of each region,
i.e., the probability density function only depends on
the region but does not change within one region, it has
been suggested in Kadir and Brady (2003) to consider
density functions that may vary within regions. This can
be advantageous in scenes with complex objects, shad-
ows, and highlights, where differences between object
and background are often only locally visible. A global
statistical model looses this local information and can
thus loose the capability to separate the regions.

We model the regions by the following local Gaus-
sian probability density that varies with the position x
in the image:

pii(s, x) = ! exp <(s _ 'uij(x»z)
v «/EO',‘]‘(X) 2(Tt'j(x)z .
2.4)

The parameters p;;(x) and o;;(x) are computed in a
local Gaussian neighborhood K, around x by:

Jo, Ko = 0)1;(0)d¢
Jo, K& —x)dt
Jo, Ko(@ = )U1;(©) — pij(x))* dg
Jo, Ko —x)dt

Mij(x) =

Uij(x) =

@2.5)

where p denotes the standard deviation of the Gaus-
sian window. In order to obtain reliable estimates for
the parameters p;;(x) and o;;(x), it is recommended to
choose p > 6.

Two major drawbacks come along with these local
statistics. Firstly, they demand a considerably larger
amount of computation time than global estimates
(about one order of magnitude). Secondly, they induce
more local minima in the energy functional. It is mainly
due to the latter reason that we choose Gaussian den-
sities and not a non-parametric model as in Kadir and
Brady (2003). With global statistics, non-parametric
region models are often advantageous, since they can
better adapt to multimodal densities. Within a local
window, however, such multimodal situations are rare.
Consequently, one can expect the less complex model
to be more reliable.
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3. Integration of a 3-D Surface Model
and Estimation of its Pose

Segmentation approaches from the type described in
the last section can perform very well, if all model
assumptions are satisfied. In many images, however,
the model will prefer to separate other regions than
the object regions. Additional constraints have to be
introduced in order to restrict the sought contour to
stay close to a certain shape. This concept is already
well-established in the segmentation of 2-D images us-
ing 2-D shape knowledge, (Leventon et al., 2000; Cre-
mers et al., 2001; Rousson and Paragios, 2002; Cremers
et al., 2002) or the segmentation of 3-D volume data
and 3-D shape knowledge (Yezzi et al., 2001; Rousson
et al., 2004).

In this section, we will implement this concept when
2-D images and a 3-D shape model are given. In com-
parison to the above-mentioned situations, this comes
along with additional difficulties. The integration of
prior shape knowledge always includes an estimation
of the shape’s pose in the image. This is necessary
since usually one wants the method to be invariant to a
certain class of pose transformations, e.g. rigid trans-
formations. In contrast to matching 2-D images to a
2-D shape or 3-D volumes to a 3-D shape, the case
investigated here implies a projection as well as an in-
verse projection to match the 3-D shape to 2-D image
data and vice-versa. In the following, we introduce a
way to integrate a joint evolution of the contour and the
pose in the variational setting from the last section.

3.1. Extending the Energy by a Shape Term

To this end, the energy functional in (2.1) is extended
by an additional term. This term implements the new
model assumption that the shape in the image should
be close to the projection of a given object model that
can be obtained, e.g., as the mean surface of a set of
3-D training shapes. The extended energy reads:

E(®, 08) = —/(H(<I>)10gp1
Q
+ (1 = H(®))log p2)dx
+v/|VH(<I>)|dx
Q

+Af(<l> — dy(PE)*dx. (3.6)
Q

Shape

The parameter A > 0 determines the variability of the
estimated contour from the modeled one. This variabil-
ity could as well be estimated in a more sophisticated
manner from a set of training shapes. Since this work,
however, does not focus on the statistic modeling of
shapes but on the general integration of 3-D shapes
into 2-D image segmentation, we keep the shape model
simple.

The quadratic error measure in the shape term of
(3.6) has been proposed in the context of 2-D shape
priors, e.g. in Rousson and Paragios (2002), and is not
new. However, the prior &y € 2 — R is now derived
from a 3-D model and depends on a 3-D rigid transfor-
mation 6&.

3.1.1. Surface Representation. There exist different
ways to represent 3-D shapes (Besl, 1990; Campbell
and Flynn, 2001): a common way is to use lo-
cal representations, e.g. point sets, line segments or
curve segments. Global representations can roughly
be divided into implicit representations, e.g., by us-
ing superquadrics, generalized cylinders, or 3-D level
set functions, and explicit ones, e.g. two-parametric
meshes, triangulated surfaces, or by using Fourier de-
scriptors. An overview of free-form representations
can, e.g., be found in Campbell and Flynn (2001),
though the focus of their work is on object recogni-
tion and not on pose estimation.

In this work we use a parametric model in terms of
a two-parametric surface. This means, a surface F is
represented by two sampling parameters ¢; and ¢, and
points on the surface are given as

F(1, ¢2) = (f' (D1, ¢2), F2 (@1, $2), [ (1, 2.

Thus, the surface is represented by three 2-D functions
fi(¢1, ¢2) : R> — R acting on the three Euclidean
basis vectors. Although other free form models of the
surface are applicable as well, we have chosen this rep-
resentation, since it provides instant access to surface
points and allows for quickly computing image silhou-
ettes and projections of the surface mesh. To project
the surface mesh to an image plane, just the sample
points need to be projected. These points are then con-
nected by line segments. Moreover, one can derive a
low-pass object description from this representation by
using Fourier descriptors. This has proven beneficial to
avoid local minima in the pose estimation. For details
we refer to Rosenhahn and Sommer (2004).
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3.1.2. Representation of Rigid Transformations
using Screw Transformations. Every 3-D rigid body
motion (RBM) can be represented as a 4 x 4 matrix

Ri.3  t34
M=< 3x3 13 1) 37)
0,3 1

for a given rotation matrix R3x3 € SO(3), with
SOm) :={R e R : RRT = I, det(R) = +1},
and a translation vector £34;. By using homogeneous
coordinates, a point x can be transformed by matrix-
vector multiplication x’ = Mx. The 3-D rigid body
motion has six degrees of freedom, three for the rotation
and three for the translation (Gallier, 2001). A common
way to represent rigid body motions is by using Euler
angles and a translation vector (Murray et al., 1994),
thus resulting in a consecutive evaluation of the RBM.

In fact, M is an element of the one-parametric Lie
group SE(3), known as the group of direct affine
isometries. Elements of a Lie-Group can be represented
in an exponential form, thus resulting in a continuous
representation of the RBM (i.e. the rotation and trans-
lation is evaluated simultaneously for a velocity param-
eter ). A main result of Lie theory is that to each Lie
group there exists a Lie algebra which can be found in
its tangential space by derivation and evaluation at its
origin; see (Gallier, 2001; Murray et al., 1994; Sommer,
2001) for more details. The corresponding Lie algebra
to SE(3) is se(3) = {(v, w)|v € R?, w € s0(3)}, with
so3) = {A € R*>3|A = —AT}. The elements in
se(3) are called twists, which can be denoted as

P o v .
g = 9<03><1 0), with
0 —3 w7
w = ( w3 0 —a)1>. (38)
‘) w1 0

A twist is sometimes written as vector

08 = 0(w, w2, w3, V1, V2, v3)", with

ol = (@1, w2, @3)" |2 = 1. (3.9)

It contains six parameters, namely 6, vy, v,, v3 and @
with |jwl|l, = 1. To reconstruct a group action M €
SE(3) from a given twist, the exponential function
exp(@é ) = M € SE(3) can be used. The parameter
0 € R corresponds to the motion velocity, i.e., the ro-
tation velocity and pitch. For varying 6, the motion can
be identified as screw motion around an axis in space.

This is proven by Chasles Theorem (Murray et al.,
1994) from 1830. Representing a rigid body motion
as a screw transformation means to evaluate the rota-
tion and translation simultaneously. This is an impor-
tant aspect for the later used gradient descent approach
for minimizing the constraint equations for pose esti-
mation. Indeed, computing the exponential of a matrix
is not trivial, but the RBM from a given twist can be
calculated efficiently by using the Rodriguez formula
(Murray et al., 1994),

exp(£6)
_ <exp(9c2)) (I — exp(@9))(w x v) + wav6?>
o le3 1 ’

for w # 0 (3.10)

with exp(f®) computed by calculating

exp(0®) = I + &sin(9) + c?)z(l — cos(6)),
3.11)

i.e., only sine and cosine functions of real numbers need
to be computed.

3.1.3. Projection of the 3-D Surface to Yield a 2-D
Prior. To interact with the segmentation in the im-
age, the surface has to be projected to the image plane.
Moreover, the projected shape @ in the energy (3.6) is
assumed to be represented by the signed Euclidean dis-
tance function, i.e., ®y(x) yields the Euclidean distance
of x to the silhouette of the projected object surface.
For each pose configuration #& one can derive
do(PE, x) as follows: let X denote the set of points
X on the object surface. Projection of the transformed
points exp(6€)X s into the image plane yields the set xg
of all 2-D points x on the image plane that correspond
to a 3-D point on the surface
x = Pexp(0é)X,

VXeXs (312

where P denotes a projection with known camera pa-
rameters.? This set of points yields the binary function
d, representing the projected surface by setting

o 1 ifx € xg
Dp(x) = { (3.13)

—1 otherwise.

By applying the signed distance transform to @, one
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obtains

dist(x, C) if $p(x) > 0
Dp(x) = , : (3.14)
—dist(x, C) otherwise

where dist(x, C) denotes the Euclidean distance of x to
the zero-level line C of ®,. Anefficientimplementation
of the Euclidean distance transform can be found in
Felzenszwalb and Huttenlocher (2004).

3.1.4. Interpretation of the Energy. The shape term
in (3.6) penalizes deviations of the contour @ from
the contour of the projected object model ®,. This en-
sures that ® cannot deviate too much from the mod-
eled shape. The weighting parameter A > 0 thereby
determines just how far the contour can deviate from
the prior. If the correct pose parameters were known,
a large value of A would ensure that the contour fully
converges to the shape of the projected object model.
However, the pose parameters are not known but are
free variables and supposed to be optimized together
with the contour. Thus the shape term in (3.6) not only
draws the contour towards the projected object model,
but also makes the object model to change its pose such
that the projection ®( resembles the contour ®. While
®,, thereby has to respect the constraint of a 3-D rigid
motion, ® has to respect the data in the image. In order
to minimize the total energy, we suggest an explicit it-
erative scheme where one optimization variable is kept
constant while the other is optimized, and vice-versa.

3.2.  Optimization with Respect to the Contour

Since the shape term is modeled in the image domain,
minimization of (3.6) with respect to ® is straight-
forward and equal to the approach in Rousson and
Paragios (2002). It yields the gradient descent equation

3,® = H'(®) (10 Pl div (E»
T = Vo
420 (Do(0F) — D). (3.15)

One can see again from this evolution equation that
the shape term pushes ® towards the projected surface
model, while on the other hand, ® is still influenced by
the image data trying to ensure homogeneous regions
according to the maximum a-posteriori criterion.

3.3.  Optimization with Respect to the Pose
Parameters

Optimization with respect to the pose parameters needs
considerably more care, since the way how the projec-
tion of the shape varies with a certain 3-D rigid trans-
formation is quite complex. Thus, it is far from straight-
forward to solve the inverse problem, i.e., to find the
3-D rigid transformation that minimizes the distance
of the contours in 2-D. In the following we describe
step by step how such an optimization scheme can be
derived.

3.3.1. Point Correspondences Between the Contours.
Due to @ and & being signed distance functions, the
error measure in (3.6) integrates for each point on one
contour the distance to the closest point on the other
contour. Therefore, we collect the point correspon-
dences from all points on the zero-level of @ to their
closest point on the zero-level of ® and vice-versa. For
each point on the zero-level of &, we know its 3-D
coordinates (®( was obtained by projecting these 3-D
points to the image). Consequently, we obtain a set of
correspondences between 2-D points stemming from
® and 3-D points from the surface model.*

Since a rigid transformation changes ®, it may also
change the points that correspond to each other. Thus,
each iteration has to update the point correspondences.
One may note the strong similarities to iterated closest
point (ICP) algorithms (Besl and McKay, 1992; Zhang,
1994).

3.3.2. Inverse Projection and Pliicker Lines. Inorder
to estimate a 3-D transformation from the correspon-
dences, we change the 2-D points into 3-D entities, i.e.,
their projection rays need to be constructed. A projec-
tion ray contains all 3-D points that, when projected to
the image plane, yield a zero distance to the contour
point there. Hence, for minimizing the distance in the
image plane, one can as well minimize the distance
between the model points and the rays reconstructed
from the corresponding points.

There exist different ways to represent projection
rays. As we have to minimize distances between corre-
spondences, it is advantageous to use an implicit rep-
resentation for a 3-D line. It allows instantaneously to
determine the distance between a point and a line.

One implicit representation of projection rays is
by means of so-called Pliicker lines (Shevlin, 1998;
Sommer, 2001). A Pliicker line L = (n, m) is given as
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a unit vector n and a moment m with m = x x n for
a given point x on the line. An advantage of this rep-
resentation is its uniqueness (apart from possible sign
changes). Moreover, the incidence of a point x on a line
L = (n, m) can be expressed as

xelLsxxn—m=0. (3.16)

This equation provides us with an error vector. Let L =
(n,m), withm = v x n as shown in Fig. 2, and x =
X+ xp, withx ¢ Landx, L n.

Since x; x n =m,x, 1 n,and ||n|| = 1, we have

lx xn—m|| = |x; xn+x, xn—m| = |lx2 xn|
= [lx2l 3.17)

where || - || denotes the Euclidean norm. This means that
x xn—m in (3.16) results in the (rotated) perpendicular
error vector to line L.

3.3.3. Pose Estimation. With the result from the last
section, the pose can now be determined as the rigid
transformation that minimizes the total error over all

]

Figure 1. The pose estimation scenario: the aim is to estimate the
rigid transformation exp(9€) = R, ¢ that produces the object contour
seen in the image.

X L

X

n

Figure 2.  Comparison of a 3-D point x with a 3-D line L.

correspondences i:
> ltexp@€)x)3u1 x m; — m;[|3 — min.
(3.18)

Indeed, x; is a homogeneous 4-D vector, and after mul-
tiplication with the 4 x 4 transformation matrix exp(@é)
we neglect the homogeneous component (which is 1)
to evaluate the cross product with n;.

While minimizing this total 3-D error is not exactly
equivalent to the minimization of the sum of errors
in the image plane as stated in the energy, it has been
shown in Rosenhahn (2003) that one can provide equiv-
alence between these measures by appropriately rescal-
ing each error vector with a suited 7;:

Z i 11 (exp(8€)x;)3x1 x n; —m;||3 — min.
(3.19)

The scalar 1; can be used to rescale the 3-D error vector
to gain a different error metric. Let x; be the image point
of the projection ray (n;, m;), Px; be the projection of
x; and v be the distance of the 3-D point x; to the
projection ray. Then the scaling factor

/
n = ”th xi”Z (320)
v
leads to the desired error in the image plane. For most
objects and camera configurations, the rescaling has
only very little influence on the estimation result. Thus,
if desired, in our implementation the local rescalings
can be switched on, but we usually skip it for efficiency
reasons, in particular since the 3-D error is not wrong
but only inconsistent with the energy functional.
The minimization problem in (3.18) or (3.19) is
a least squares problem. Unfortunately, however, the
equations are non-quadratic due to the exponential
form of the RBM. For this reason, the RBM is lin-
earized, and the pose estimation procedure is iterated,
i.e., the nonlinear problem is decomposed into a se-
quence of linear problems. R
By using exp(6€) = Y2, (gli)k ~ I+ 6E, with I as
identity matrix, linearization of

(exp(0€)x)3x1 x n—m =0
results in

(I +06)x)3 xn—m = 0. (3.21)
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This equation can be reordered into the form A = b.
Collecting a set of such equations (each is of rank two)
leads to an overdetermined linear system of equations,
which can be solved using, for example, the House-
holder algorithm. The Rodriguez formula can be ap-
plied to reconstruct the group action M from the esti-
mated twist £. Then, the 3-D points can be transformed
and the process is iterated until it converges.

Every (linearized) constraint equation yields three
rows in the system of equations with respect to the un-
known pose parameters. If a confidence measure of the
extracted contour @ is available, it is further possible to
scale the equations with respect to the confidence mea-
sure, similar to Eq. (3.19). This has the effect that cor-
respondences with a higher confidence are reinforced,
whereas correspondences with lower confidence are
alleviated. In Rosenhahn (2003) this property to ma-
nipulate local correspondences is called adaptive pose
estimation. Note, however, that the scaling of equations
is no longer consistent with the energy in (3.6).

In case of minimizing the 3-D error measure, the
projection rays only need to be reconstructed once, and
can be reconstructed from orthographic, projective or
even catadioptric cameras. The algorithm is very fast
(e.g., it needs 2 ms on a standard (2 GHz) Linux PC
for 100 point correspondences). In Rosenhahn (2003)
extensions to point-plane, line-plane constraint equa-
tions and kinematic chains are presented using Clifford
algebra (Sommer, 2001).

3.3.4. A Confidence Measure for Contour Points.
Although we are currently not able to state an energy
that is minimized by the scaled pose estimation equa-
tions, we introduce here a possibility to derive a mea-
sure of confidence for the contour. It takes into account
that the separability of the object and the background
region can be considerably reduced in some areas. This
happens in particular at locations where the shape prior
contradicts the local region statistics, e.g., due to oc-
clusions.

The sought confidence at a certain point x on the
contour can be expressed by the a-posteriori probability
of the region the point has been assigned to. This reads

P1(x) fo, Ko(x)ds

&(x) = H(®()
p(x)
) [, K, (x) dE
) Ja, Ko @ | Lo
p(x)

(3.22)

where K, is the Gaussian kernel from Section 2.3. If
a pixel assigned to region €2; also fits well to region
Q,, i.e., p1 & p», the precise location of the contour
will be ambiguous and the confidence will be around
0.5. Obversely, if a pixel assigned to €2; does not fit
to region €2;, i.e., p1 > pa2, the contour location will
be definite and the confidence will be close to 1. If
a pixel is assigned to the wrong region according to
the statistics—this can happen due to contradictions
with the object prior or the length constraint—the con-
fidence will be even smaller than 0.5.

Due to slightly blurred edges, pixels directly on the
contour often have a quite low confidence, although
the separability of the regions in the surrounding area is
high. Therefore, it is reasonable to take also pixels from
the neighborhood into account. This can be achieved
by a simple convolution with a Gaussian kernel K,

c(x) = (Ky * C)(x) (3.23)
where we set 0 = 1.5. When scaling the equations in
Section 3.3.3 by c(x) one can obtain slightly improved
results as demonstrated by one experiment in Section 4.

3.4.  Summary of the Optimization Procedure

The complete optimization procedure can be summa-
rized as follows:

1. Initialize the pose parameters by some values that
are sufficiently close to the true pose.

2. Project the surface model with the current pose pa-

rameters to the image plane and construct ®g as

described in Section 3.1.3.

Initialize ® with ®,.

4. Compute the probability densities p; for the current
segmentation ®.

5. Update ® according to (3.15).

6. Compute the set of point correspondences as de-
scribed in Section 3.3.1.

7. Reconstruct projection rays from the 2-D points as
described in Section 3.3.2.

8. Find the pose parameters that minimize the total
distance between the 3-D points and the projection
rays as described in Section 3.3.3.

9. Update @ as in 2.

10. Iterate 4-9.
11. Repeat 3—10 for each frame in the image sequence.

(98]

An illustration can be found in Fig. 3.
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Generate @,
(project 3-D surface mesh onto image plane)

Correspondences between® and @,
(Section 3.3.1)
Pose Estimation

(reconstruct projection rays, Section 3.3.2)
(find pose parameters, Section 3.3.3)

E, I1(exp (8 )5,)ys X = ;= min

Update @,
{update position of 3-D model and its projection)

Figure 3. Summary of the optimization scheme.

4. Experiments

We investigated the performance of our joint contour
extraction and pose estimation method in a couple of
experiments. Figure 4 first demonstrates the general ad-
vantage of integrating object knowledge into the seg-
mentation process. Without object knowledge, parts of
the tea box are missing as they better fit to the back-
ground. The object prior can constrain the contour to
the vicinity of the projected object model derived from
those parts of the contour that can be extracted reliably.
This concept is also the key issue of approaches that
use 2-D shape knowledge. With 3-D shape knowledge,
however, it is no longer necessary to model several
views. Moreover, the object model can perfectly fit the
data, while in 2-D approaches there remain discrepan-
cies if the current view does not coincide perfectly with
one of the modeled views.

In Fig. 5 we show the robustness of the method in
the case of a changing background. One can see that

the estimated pose of the tea box is not distracted by
any of the objects moved in the background, though
the CDs even reflect the tea box surface. Later on
in the sequence, also the tea box itself is moved,
which shows that the method is not tuned for static
objects.

In the experiment shown in Fig. 6, we tested the in-
fluence of artifacts like reflections, shadows, and noise.
The motion of the object causes partially severe reflec-
tions on the metallic surface of the tea box. Moreover,
the tea box throws a shadow as it is tilted. Additionally,
Gaussian noise with standard deviation 30 has been
added to the sequence. These difficulties partially lead
to small errors, yet the overall results remain stable.
Also the slight occlusion due to the fingers does not
harm the pose estimation. The presence of noise in
this sequence clearly rules out methods that are based
on background subtraction. Also simple thresholding
methods for contour extraction would fail due to the
cluttered background and the reflections.

Figure 7 compares the results obtained with and
without the suggested confidence measure, respec-
tively. The confidence measure prevents the result from
being deteriorated by the shadow and the occluding
fingers. With a homogeneous weighting, the correct
contour points have not enough weight to ensure the
correct pose estimate.

In the experiment depicted in Fig. 8, the monocular
camera has been extended to a stereo system. In this
case, another significant advantage of using 3-D shape
knowledge becomes apparent. In contrast to 2-D ap-
proaches, our method can fuse the information from
two images. If the information in one image is not
reliable, e.g due to occlusions, the information from
the other image can still determine the pose. Even if
there are occlusions in both images, the combined in-
formation from both images can be still sufficient for
a reliable pose estimation. The object model with the
correct pose, on the other hand, constrains the contour
and keeps it from breaking away.

Figure 4. From left to right: (a) Initialization. (b) Segmentation result with object knowledge. (c) Pose result. (d) Segmentation result without

object knowledge.



Three-Dimensional Shape Knowledge for Joint Image Segmentation and Pose Tracking

T:"':;‘

Figure 5. Top row: Input images for frames 51, 189 and 450 of an image sequence containing 560 frames. Bottom row: Pose results. The
algorithm is able to deal with a cluttered and changing background.

Figure 6. Top row: Initialization at the first frame. Contour at frames 49, 50, and 116 of the sequence. Botfom row: Pose results at frames 0,
49, 50, and 116. The tea box is moved, causing partially severe reflections on the box. Furthermore, Gaussian noise with standard deviation 30
has been added.

Figure 7. From left to right: (a) Frame 13. (b) Pose estimation result without the proposed confidence measure. (c) Result when exploiting the
confidence. (d) Confidence along the contour. Dark values represent a high confidence.
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Figure 8. Frame 97 from a stereo sequence with 400 frames. In both views the object is partially occluded. Top left: Due to the shape prior, the
contour is kept close to object. Top right: Here, the contour has been initialized at this frame with the correct contour, but the shape constraint
has been neglected (A = 0). Consequently, the contour breaks away. Bottom left: Pose result. Bottom right: Visualization of the object pose from
two different views. Each square of the floor represents two centimeters in the world coordinate system. The pose is recovered with a deviation

of only a few millimeter.
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Figure 9. Top: Contour and pose results at frame 190 and 212 for the stereo sequence from Fig. 8. Bottom: Pose results at frame 190 and 212
from two different perspective views. Each floor square represents two centimeter in the world coordinate system.

In the sequel of this stereo sequence, the tea box
is moved. Two further frames are depicted in Fig. 9.
Again there appear reflections on the surface of the box,
and there are further partial occlusions due to the hand.

In order to demonstrate that the approach is not re-
stricted to a certain type of object, Fig. 10 shows an

experiment with a teapot model. This object is non-
convex and even contains a hole. Dealing with such a
kind of object, it is particularly beneficial to represent
the contour by means of a level set function. In the
level set framework, the more complex topology does
not change anything. Thus, the region encircled by the
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Figure 10. From left to right: (a) Stereo image with a teapot. The initialization is quite far away from the object. (b) Resulting contour when
performing only one iteration. The contour is restricted to the initial, bad pose and cannot fully capture the object. (c) Consequently, the pose

remains close to the initialization. (d) Pose result after 20 iterations.

Figure 11. Most left: Stereo image of the teapot. The image pair is disturbed with rectangles of random size, position, and color. The
initialization is close to the correct pose. From left to Right: Segmentation results for varying weights of the shape constraint A = 0.001, 0.06, and

0.1.

handle of the teapot can correctly be assigned to the
background region. The roundish teapot immediately
rules out line based methods for this task. Also meth-
ods based on feature matching may have difficulties due
to the homogeneous surface of the object. Further note
the rather bad initialization. A decoupled concatenation
of the segmentation technique and the pose estimation
method cannot succeed in finding the right contour and
pose. Only the mutual improvement of both the contour
and the pose allows for a good result in the steady state.

Figure 11 illustrates the role of the weighting param-
eter A for the shape prior. In this example we use one
frame of the stereo sequence with the tea pot disturbed
by colored rectangles of random size and position. The
initialization is shown on the left. The remaining im-
ages show the contour for A = 0.001, 0.06 and 0.1,
respectively. Small A give the contour much freedom
to evolve, enabling the pose to follow. If the object

region can be clearly separated from the background,
choosing X small is therefore beneficial. On the other
hand, if the contour is distracted by background clutter,
the shape information keeps the contour from running
too far away from the object. In our other experiments
we have therefore chosen A in the area of 0.06.

Figure 12 depicts a sequence where object and cam-
era are static to allow a quantitative error measure-
ment. The diagrams on the left show the translational
and angular errors along the three axes, respectively.
Despite the change of the lighting conditions and par-
tial occlusions, the error has a standard deviation of
less than 2 mm and 6.0 degrees. The main rotational
errors occur for rotations around the x-axis of the cali-
brated system. This is due to the fact that such a rotation
causes smaller changes of the silhouette than rotations
around the other axes. Therefore, this degree of free-
dom is more sensitive to inaccuracies or errors in the
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Figure 12.  Top row: Some frames from a static stereo sequence with illumination changes and partial occlusions (left and right view in the
top and bottom row, respectively). Diagrams left: Rotational and translational errors in radians and millimeters for the undisturbed sequence.

Diagrams right: The sequence has been disturbed with random rectangles as shown in Fig. 13. The estimation errors increase to up to 2.5 cm
in space.

Figure 13. The sequence from Fig. 12 has been disturbed with rectangles of random size, position, and color, which leads to occlusions of
the object. Top row: Pose results for different frames. Bottom row: Segmentation results. The occlusions can be compensated due to the object
model. The result on the right shows the worst pose according to the diagram in Fig. 12.
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Figure 14. A second stereo sequence with the tea pot, where the handle of the tea pot vanishes behind the container and reappears. Finally the
tea pot is moved around (345 frames). Top row: Pose results for different frames. Middle row: Segmentation results. Due to the shape model,
the occluding hand only slightly disturbs the contour extraction. Last row: Pose results from different perspective views. The rotation on the

ground floor is accurately estimated.

Figure 15. The stereo sequence from Fig. 14 is now randomly disturbed with rectangles. Top row: Pose results. Middle row: Segmentation
results. Last row: Pose results from different perspective views. The pose result of the non-disturbed images is blended with the scene. The

deviation is in the area of one centimeter.

extracted contour. The x-axis is located horizontally
along the teapot, crossing the center of the teapot, and
pointing from the handle to the spout.

The diagrams on the right hand side of the same
figure show the translational and angular errors for
the same sequence disturbed by random rectangles, as
shown in Fig. 13. The occlusions partially lead to bad
segmentations, which can be compensated due to the
object model. Here, the error is up to 25 mm and 12
degrees.

In order to demonstrate the ability of the approach
to deal with topological changes in the contour, Fig. 14

shows pose and segmentation results of a second
stereo sequence. At the beginning, the teapot is rotated
on the ground floor (along the y-axis), such that the
handle and the opening of the handle vanish behind
the container and reappear later. Thanks to the shape
prior, the level set segmentation can recapture the hole
when it reappears.

In the sequel, the handle is grabbed and the tea pot
is moved around. The bottom row in Fig. 14 visualizes
the 3-D pose in a virtual environment. During rotation
on the ground floor, the tea pot is nearly perfectly on
the floor as it should be (see also Fig. 16).
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Figure 16. Comparison of the x-, y- and z-axis of the estimated pose for the stereo sequence in Figs. 14 and 15. In the first part of the sequence,
the tea pot is just rotated on the floor. The nearly constant values of the y-axis (with a deviation of 2—-5 mm) indicate a stable result. Then the tea
pot is grabbed and moved around. The curves for the disturbed images show larger errors (up to 2 cm), but it is still possible to track the tea pot.

Again, we disturbed the sequence by occluding rect-
angles. The results are depicted in Fig. 15. For analyz-
ing the impact of the disturbances, in the last row, pose
results from the disturbed sequence are blended with
the results from the non-disturbed data. The deviation
is in the area of one centimeter, which demonstrates
the stability of the method in case of occlusions. The
diagram in Fig. 16 further quantifies this outcome. It
shows the tracking curves for the disturbed and undis-
turbed sequences in Figs. 14 and 15, respectively. In
the first part of the sequence, the tea pot is just rotated
on the floor. The nearly constant values of the y-axis
(with a deviation of 2-5 mm) indicate a stable result.
The values of the disturbed sequence have a higher de-
viation (up to 2 cm), but it is still possible to reliably
track the tea pot.

The overall computation time depends on the num-
ber of iterations necessary for the method to converge.
For the last (and hardest) sequence that includes the
disturbances by random rectangles, the computation
time per stereo pair was approximately 2 min (1 min
and 50 sec to 2 min and 2 sec) on a 2.4 GHz opteron
Linux machine. The computation time is significantly
larger than with other pose tracking models that of-
ten achieve real-time performance. However, in con-
trast to these approaches, our model includes a sophis-
ticated interlocking of region based segmentation and
pose estimation as well as statistical region models that
allow for good results in situations where current real-

time approaches may fail. Even recent pose trackers
based on local descriptors, which yield very good re-
sults,” generally do not work well with homogeneous
objects like the teapot. We have shown that such ob-
jects can be tracked reliably by our approach despite
background clutter and occlusions, which disturb other
contour based techniques.

5. Conclusion

In this work, variational and statistical methodolo-
gies have been combined with geometric techniques
previously developed in the language of Clifford al-
gebras. We introduced a method that integrates 3-D
shape knowledge into a variational model for level
set based image segmentation. While the utilization
of 2-D shape knowledge has been investigated inten-
sively in recent time, the presented approach takes the
three-dimensional nature of the world into account.
The method relies on a powerful image-driven seg-
mentation model on one side, and an elaborated tech-
nique for contour based 2D-3D pose estimation on the
other side. The combination of both techniques in a
joint energy minimization problem improves the qual-
ity of contour extraction and, consequently, also the
robustness of pose estimation, which relies on the con-
tour. This allows for the tracking of three-dimensional
objects in cluttered scenes with inconvenient illumina-
tion effects and partial occlusions.
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Appendix A: Euler-Lagrange Equations for
Local Statistics

A popular way to minimize energies like the one in
(2.1) is the EM-algorithm. EM keeps the probability
densities p; fixed for computing an update of the con-
tour ® and then, vice-versa, updates the densities while
retaining the contour. Although it is known that the
EM-algorithm converges, the dependency between the
contour and the densities is neglected. Alternatively,
one can write (2.1) as a functional that only depends
on @ and compute the corresponding Euler-Lagrange
equation. In the following, we derive this Euler-
Lagrange equation for local Gaussian region statistics
as introduced in Section 2.3.

First we introduce the characteristic functions y; :=
H(®) and x, := (1 — H(®P)). Then the energy in (2.1)
can be written as:

local mean 1 and variance o yields

( _ fKI)((CD)d;')Z

TKx(®)dt
/QX(CD) T KI2x(®)ds _(fKIx(fb)d{)Z
[Kx(@®)d¢ JKx(@)dg
[ KI*x(®)de (f le(d>)d§>2
+1 - d
8 ( [ Kx(®)d¢ [ Kx(®)dt *

where K denotes a local Gaussian window centered
at x. For the Euler-Lagrange equations we compute

ol
—/ L(P +eh)dx
de Q

e=0
With the abbreviations

A::/ Kx(®)d¢ s:=/ Kx'(®)d¢
Q Q

_ [ KIX(®de KA (@) de
c =———"—" c = ———

2 s s
- Z/ xi(®)log p; dx + v/ |VH(®)|dx. we obtain
i=17Q Q
I — p)? 2] — I — )2 1
x(®) (# +10g(,2> @) [—( e - + (—( L —2> (O — 2upc — o+ u)} ~0.
o A o o o

usual term

In the following we neglect the last term, since it is in-
dependent from the region statistics. We further see that
the terms for both regions are symmetric. We can thus
concentrate on computing the Euler-Lagrange equation
for one of the regions. The additional term for the sec-
ond region can be derived the same way. So we compute
the Euler-Lagrange equation of

—/ x(®)log pdx
Q

2
= l/ x(®P) <w + log(27) +10ga2) dx
2 Q o

As the pre-factor 1/2 has no influence on the minimizer,
it can be neglected. Also the term log(27) can be ne-
glected, as the same term reappears for the other region
with opposite sign and thus cancels out. Expanding the

additional term

Besides the usual term known from the EM-algorithm,
there is a further term that is zero if the window K
covers the whole image domain €2 (global density esti-
mate). Then the integral of / —  is zero and the integral
of U;—ﬁ‘)z — ﬁ too. In general the term is not zero, yet
one can see that it is small, as it depends on the ratio
between the contour length and the region area. For a
window K with reasonable size, this ratio is consider-
ably smaller than 1. Moreover, the importance of the
term depends on the difference between the statistics
along the contour and within the region. This difference
is usually very small, as well, especially when the con-
tour is still far from the state of convergence. For this
reason, the additional term can be neglected without
loosing the advantages of the variational framework.
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Notes

1. Extensions from rigid bodies to kinematic chains have been sug-
gested in Bregler and Malik (1998), and Bregler et al. (2004).

2. A related problem appears in certain works on shape reconstruc-
tion, e.g. in Faugeras and Keriven (1998), and Yezzi and Soatto
(2003a,b).

3. Incase of adiscrete mesh representation of the surface, as assumed
above, one has to fill the gaps in the projected mesh to obtain a
continuous representation of the projected surface.

4. For being fully consistent with the energy in (3.6), one had to
match not only the points on the zero-level lines of ® and @,
but additionally all points where &y > 0. This could be done,
for instance, with a variation of the framework in Paragios et al.
(2003). For efficiency reasons, however, we take only point cor-
respondences for points on the contours into account.

5. for instance, the method in Vacchetti et al. (2004) can deal with
larger displacements than our method.

References

Aratijo, H., Carceroni, R.L., and Brown, C.M. 1998. A fully pro-
jective formulation to improve the accuracy of Lowe’s pose-
estimation algorithm. Computer Vision and Image Understanding,
70(2):227-238.

Besl, P. and McKay, N. 1992. A method for registration of 3D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
12:239-256.

Besl, PJ. 1990. The free-form surface matching problem. In Ma-
chine Vision for Three-Dimensional Scenes, H. Freemann (Ed.),
Academic, Press: San Diego, pp. 25-71.

Beveridge, J.R. 1993. Local search algorithms for geometric ob-
ject recognition: Optimal correspondence and pose. Technical
Report Technical Report CS 93-5, University of Massachusetts,
Amberst.

Blake, A. and Zisserman, A. 1987. Visual Reconstruction. MIT Press:
Cambridge, MA.

Blaschke, W. 1960. Kinematik und Quaternionen, Mathematische
Monographien. 4. Deutscher Verlag der Wissenschaften.

Bregler, C. and Malik, J. 1998. Tracking people with twists and
exponential maps. In Proc. IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Santa Barbara,
California, pp. 8-15.

Bregler, C., Malik, J., and Pullen, K. 2004. Twist based acquisition
and tracking of animal and human kinetics. International Journal
of Computer Vision, 56(3):179—194.

Brox, T., Rosenhahn, B., and Weickert, J. 2005. Three-dimensional
shape knowledge for joint image segmentation and pose estima-
tion. In Pattern Recognition, W. Kropatsch, R. Sablatnig, and
A. Hanbury (Eds.), volume 3663 of LNCS, Springer, pp. 109-116.

Brox, T. and Weickert, J. 2005. Level set segmentation with multiple
regions. Technical Report 145, Dept. of Mathematics, Saarland
University, Saarbriicken, Germany.

Brox, T. and Weickert, J. 2006. A TV flow based local scale estimate
and its application to texture discrimination. Journal of Visual
Communication and Image Representation, To appear.

Campbell, R. and Flynn, P. 2001. A survey of free-form object repre-
sentation and recognition techniques. Computer Vision and Image
Understanding, (81):166-210.

Caselles, V., Catté, F., Coll, T., and Dibos, F. 1993. A geometric model
for active contours in image processing. Numerische Mathematik,
66:1-31.

Chan, T. and Vese, L. 1999. An active contour model without edges.
In Scale-Space Theories in Computer Vision, M. Nielsen, P. Jo-
hansen, O. F. Olsen, and J. Weickert (Eds.), volume 1682 of LNCS,
Springer, pp. 141-151.

Chan, T. and Vese, L. 2001. Active contours without edges. IEEE
Transactions on Image Processing, 10(2):266-277.

Cremers, D., Osher, S., and Soatto, S. 2004. A multi-modal
translation-invariant shape prior for level set segmentation. In Pat-
tern Recognition, C.-E. Rasmussen, H. Biilthoff, M. Giese, and
B. Scholkopf (Eds.), volume 3175 of LNCS, Springer, Berlin, pp.
36-44.

Cremers, D., Schnorr, C., and Weickert, J. 2001. Diffusion-snakes:
Combining statistical shape knowledge and image information in
a variational framework. In Proc. First IEEE Workshop on Vari-
ational and Level Set Methods in Computer Vision, Vancouver,
Canada, IEEE Computer Society Press, pp. 137-144.

Cremers, D. and Soatto, S. 2005. Motion competition: A variational
framework for piecewise parametric motion segmentation. Inter-
national Journal of Computer Vision, 62(3):249-265.

Cremers, D., Tischhiuser, F., Weickert, J., and Schnorr, C. 2002.
Diffusion snakes: Introducing statistical shape knowledge into the
mumford-shah functional. International Journal of Computer Vi-
sion, 50(3):295-313.

Dempster, A., Laird, N., and Rubin, D. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society series B, 39:1-38.

Dervieux, A. and Thomasset, F. 1979. A finite element method for
the simulation of Rayleigh-Taylor instability. In Approximation
Methods for Navier—Stokes Problems, R. Rautman (Ed.), vol-
ume 771 of Lecture Notes in Mathematics, Springer pp. 145—
158.

Drummond, T. and Cipolla, R. 2000. Real-time tracking of multiple
articulated structures in multiple views. In Proc. 6th European
Conference on Computer Vision, ECCV, Dublin, Ireland, Springer,
pp- 20-36.

Faugeras, O. 1993. Three-Dimensional Computer Vision: A Geomet-
ric Viewpoint. MIT Press: Cambridge, MA.

Faugeras, O. and Keriven, R. 1998. Variational principles, sur-
face evolution, PDE’s, level set methods, and the stereo
problem. IEEE Transactions on Image Processing, 7(3):336—
344.

Felzenszwalb, P.F. and Huttenlocher, D.P. 2004. Distance transforms
of sampled functions. Technical Report TR2004-1963, Computer
Science Department, Cornell University.

Gallier, J. 2001. Geometric Methods and Applications For Computer
Science and Engineering. Springer-Verlag: New York Inc.

Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 6:721-741.

Goddard, J. 1997. Pose and Motion Estimation From Vision Using
Dual Quaternion-Based Extended Kalman Filtering. PhD thesis,
Knoxville.

Grimson, W.E.L. 1990. Object Recognition by Computer. MIT Press:
Cambridge, MA.

Haag, M. and Nagel, H.-H. 1999. 3d-model-based vehicle tracking in
traffic image sequences. International Journal of Computer Vision,
35(3):295-319.



Three-Dimensional Shape Knowledge for Joint Image Segmentation and Pose Tracking

Heiler, M. and Schnorr, C. 2005. Natural image statistics for natural
image segmentation. International Journal of Computer Vision,
63(1):5-19.

Kadir, T. and Brady, M. 2003. Unsupervised non-parametric region
segmentation using level sets. In Proc. Ninth IEEE International
Conference on Computer Vision, vol. 2, pp. 1267-1274.

Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active
contour models. International Journal of Computer Vision, 1:321—
331.

Kim, J., Fisher, J., Yezzi, A., Cetin, M., and Willsky, A. 2002. Non-
parametric methods for image segmentation using information
theory and curve evolution. In IEEE International Conference on
Image Processing, Rochester, NY vol. 3, pp. 797-800, .

Kim, J., Fisher, J., Yezzi, A., Cetin, M., and Willsky, A. 2005. A
nonparametric statistical method for image segmentation using
information theory and curve evolution. /[EEE Transactions on
Image Processing, 14(10):1486-1502.

Kriegman, D., Vijayakumar, B., and Ponce, J. 1992. Constraints for
recognizing and locating curved 3D objects from monocular image
features. In Proc. 2nd European Conference on Computer Vision
(ECCV ’92), G. Sandini (Ed.), volume 588 of Lecture Notes in
Computer Science, Springer, pp. 829—-833.

Lepetit, V. and Fua, P. 2005. Monocular model-based 3D tracking of
rigid objects: A survey. Computer Graphics and Vision, 1(1):1-
89.

Leventon, M.E., Grimson, W.E.L., and Faugeras, O. 2000. Statistical
shape influence in geodesic active contours. In Proc. 2000 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), Hilton Head, SC, vol. 1, pp. 316-323.

Li, S.Z. 1995. Markov Random Field Modeling in Computer Vision.
Springer Verlag: New York.

Lowe, D. 1980. Solving for the parameters of object models from im-
age descriptions. In Proc. ARPA Image Understanding Workshop,
pp. 121-127.

Lowe, D. 1987. Three-dimensional object recognition from single
two-dimensional images. Artificial Intelligence, 31(3):355-395.

Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S., and Soatta, S. 2003. An
Invitation to 3-D Vision. Springer Verlag: New York.

Malik, J., Belongie, S., Leung, T., and Shi, J. 2001. Contour and
texture analysis for image segmentation. International Journal of
Computer Vision, 43(1):7-27.

Malladi, R., Sethian, J.A., and Vemuri, B.C. 1995. Shape modeling
with front propagation: A level set approach. I[EEE Transactions
on Pattern Analysis and Machine Intelligence, 17(2):158-175.

Mansouri, A., Mitiche, A., and Vazquez, C. 2004. Image partion-
ing by level set multiregion competition. In Proc. International
Conference on Image Processing, vol. 4, pp. 2721-2724.

Marchand, E., Bouthemy, P., and Chaumette, F. 2001. A 2D-3D
model-based approach to real-time visual tracking. Image and Vi-
sion Computing, 19(13):941-955.

McLachlan, G. and Krishnan, T. 1997. The EM Algorithm and Ex-
tensions. Wiley series in probability and statistics. John Wiley &
Sons.

Mumford, D. and Shah, J. 1989. Optimal approximations by piece-
wise smooth functions and associated variational problems. Com-
munications on Pure and Applied Mathematics, 42:577-685.

Murray, R., Li, Z., and Sastry, S. 1994. Mathematical Introduction
to Robotic Manipulation. CRC Press: Boca Raton, FL.

Osher, S. and Sethian, J.A. 1988. Fronts propagating with
curvature-dependent speed: Algorithms based on Hamilton—

Jacobi formulations. Journal of Computational Physics, 79:12—
49.

Paragios, N. and Deriche, R. 1999. Unifying boundary and region-
based information for geodesic active tracking. In Proc. 1999
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Forth Collins, Colorado, vol. 2, pp. 300—
305.

Paragios, N. and Deriche, R. 2002. Geodesic active regions: A new
paradigm to deal with frame partition problems in computer vi-
sion. Journal of Visual Communication and Image Representation,
13(1/2):249-268.

Paragios, N. and Deriche, R. 2002. Geodesic active regions and level
set methods for supervised texture segmentation. International
Journal of Computer Vision, 46(3):223-247.

Paragios, N., Rousson, M., and Ramesh, V. 2003. Distance trans-
forms for non-rigid registration. Computer Vision and Image Un-
derstanding, 23:142-165.

Riklin-Raviv, T., Kiryati, N., and Sochen, N. 2004. Unlevel-
sets: Geometry and prior-based segmentation. In Proc. Sth
European  Conference on Computer Vision, T. Pajdla
and J. Matas (Eds.), volume 3024 of LNCS, Springer,
Berlin, pp. 50-61.

Rosenhahn, B. 2003. Pose Estimation Revisited. PhD thesis, Univer-
sity of Kiel, Germany.

Rosenhahn, B. and Sommer, G. 2004. Pose estimation of free-form
objects. In Computer Vision - Proc. 8th European Conference on
Computer Vision, T. Pajdla and J. Matas (Eds.), vol. 3021 of LNCS,
Springer, pp. 414-427.

Rousson, M. Brox, T., and Deriche, R. 2003. Active unsupervised tex-
ture segmentation on a diffusion based feature space. In Proc. 2003
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, Madison, W1, pp. 699-704.

Rousson, M. and Deriche, R. 2002. A variational framework for
active and adaptive segmentation of vector-valued images. In
Proc. IEEE Workshop on Motion and Video Computing, Orlando,
Florida, pp. 56-62.

Rousson, M. and Paragios, N. 2002. Shape priors for level set repre-
sentations. In Computer Vision— ECCV 2002, A. Heyden, G. Sparr,
M. Nielsen, and P. Johansen (Eds.), vol. 2351 of LNCS, Springer,
Berlin pp. 78-92.

Rousson, M., Paragios, N., and Deriche, R. 2004. Implicit active
shape models for 3D segmentation in MR imaging. In 7th Inter-
national Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), volume 3216 of LNCS, Springer,
Berlin, pp. 209-216.

Shevlin, F. 1998. Analysis of orientation problems using Pliicker
lines. In International Conference on Pattern Recognition (ICPR),
Brisbane vol. 1, pp. 685-689.

Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8):888-905.

Sifakis, E., Garcia, C., and Tziritas, G. 2002. Bayesian level sets for
image segmentation. Journal of Visual Communication and Image
Representation, 13(1/2):44—-64.

Sommer, G. (Ed) 2001. Geometric Computing with Clifford Algebra.
Springer Verlag: Berlin.

Tsai, A., Yezzi, A., and Willsky, A. 2001. Curve evolution implemen-
tation of the Mumford-Shah functional for image segmentation,
denoising, interpolation, and magnification. IEEE Transactions on
Image Processing, 10(8):1169-1186.



Rosenhahn, Brox and Weickert

Vacchetti, L., Lepetit, V., and Fua, P. 2004. Stable real-time 3D
tracking using online and offline information. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,26(10):1391—
1391.

Vese, L. and Chan, T. 2002. A multiphase level set frame-
work for image segmentation using the Mumford and Shah
model. International Journal of Computer Vision, 50(3):271—
293.

Yezzi, A. and Soatto, S. 2003a. Stereoscopic segmentation. Interna-
tional Journal of Computer Vision, 53(1):31-43.

Yezzi, A. and Soatto, S. 2003b. Structure from motion for scenes
without features. In Proc. 2003 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, Madison, WI,
vol. 1, pp. 171-178.

Yezzi, A., Zollei, L., and Kapur, T. 2001. A variational framework

for joint segmentation and registration. In Proc. IEEE Workshop on
Mathematical Methods in Biomedical Image Analysis, pp. 44-51.

Zerroug, M. and Nevatia, R. 1996. Pose estimation of multi-part
curved objects. In Proc. Image Understanding Workshop, pp. 831—
835.

Zhang,Z. 1994. Iterative points matching for registration of free form
curves and surfaces. International Journal of Computer Vision,
13(2):119-152.

Zhao, H.K., Chan, T., Merriman, B., and Osher, S. 1996. A variational
level set approach to multiphase motion. Journal of Computational
Physics, 127:179-195.

Zhu, S.-C. and Yuille, A. 1996. Region competition: unifying snakes,
region growing, and Bayes/MDL for multiband image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 18(9):884-900.



