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Abstract

The authors of this paper adopted the projected characteristics of the absolute conic in terms of the Pascal’s theorem to
propose an entirely new camera calibration method based on purely geometric thoughts. The use of this theorem in the
geometric algebra framework allows us to compute a projective invariant using the conics of only two images which
expressed using brackets helps us to set enough equations to solve the calibration problem. The method requires
restricted controlled camera movements. Our method is less sensitive to noise as the Kruppa’s-equation-based methods.
Experiments with simulated and real images confirm that the performance of the algorithm is reliable. © 2001 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The computation of the intrinsic camera parameters is
one of the most important issues in computer vision. The
traditional way to compute the intrinsic parameters is
using a known calibration object. One of the most im-
portant method is based on the absolute conic and it
requires as input only information about the point
correspondences [1]. As extension a recent approach
utilizes the absolute quadric [2,3]. Other important
group of self-calibration methods reduces the complexity
if the camera motion is known in advance, for example,
translational [4], rotational about known angles [5,6],
actively using the vanishing point [7] or for the case of
planar camera motion image triples are used [8].

* Correspondence address. Unidad Guadalajara, CINVES-
TAYV, Computer Science Department, Apartado Postal 31-438,
Apartado la Luna, 44550 Guadalajara, Jal, Mexico. Tel.: + 52-
3-684-1580; fax: + 52-3-684-1708.

E-mail address: edb@gdl.cinvestav.mx (E. Bayro-Corrochano).
URLs: http://www.gdl.cinvestav.mx/~edb

In this paper, we reuse the idea of the absolute conic in
the context of the Pascal’s theorem and surprisingly we
get equations different to the Kruppa’s ones [1,9]. Al-
though the equations are different, they rely on the same
principle of the invariance of the mapped absolute conic.
The consequences are that we can decouple equations so
that we require only two image views as opposite to the
Kruppa’s methods that require at least three image views
[9]. However, as input information the method requires
the translational motion direction of the camera in addi-
tion to the point correspondences. A rotation about only
one axis through a known angle is also needed, that
means either R, or R, or R.. Note that we do not need
the entire essential matrix. The paper will show that
although the algorithm requires the camera translation
in advance and a rotation about one axis it has the
following clear advantages: it is derived on purely geo-
metric observations, it does not suffer a local minima in
the computation of the intrinsic parameters and it does
not require any initialization at all. We do hope that this
original method derived from a purely geometric
thoughts throws new lights to the problem of camera
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calibration and will help in the understanding and im-
provement of such calibration methods which use con-
trolled camera movements.

The paper is organized as follows: Section 2 gives a
brief introduction to geometric algebra and Section 3
presents the basics of computer vision in the geometric
algebra framework. Section 4 explains the conics and the
Pascal theorem. Section 5 reformulates the well-known
Kruppa’s equations for computer vision in terms of alge-
bra of incidence. Section 6 presents a new method for
computing the intrinsic camera parameters based on
Pascal’s theorem. Section 7 is devoted to the experi-
mental analysis and Section 8 to the conclusion part.

2. Geometric algebra: an outline

Geometric algebra (GA) is a coordinate-free approach
to geometry based on the algebras of Grassmann [10]
and Clifford [11]. The algebra is defined on a space
whose elements are called multivectors; a multivector is
a linear combination of objects of different type, e.g.,
scalars and vectors. It has an associative and fully invert-
ible product called the geometric or Clifford product. The
existence of such a product and the calculus associated
with the geometric algebra give the system tremendous
power. The geometric approach to Clifford algebra ad-
opted in this paper was pioneered in the 1960s by David
Hestenes who has, since then, worked on developing his
version of Clifford algebra — which will be referred to as
geometric algebra — into a unifying language for mathe-
matics and physics [12]. Geometric algebra provides
a very natural language for projective geometry and has
all the necessary equipment to express very elegantly the
ideas of incidence algebra involving the duality principle
and the meet and join operations. For a more complete
treatment of the projective geometry see Ref. [13] and for
a brief summary see Ref. [ 14]. Some preliminary applica-
tions of geometric algebra in the field of computer vision
have already been given [14-18].

We will begin in the following subsections with basic
definitions of geometric algebra necessary for projective
geometry. In the whole paper, we will denote with lower-
case scalars, upper-case matrices, slant-bold lower-case
vectors in 3-D and slant-bold upper-case for vectors
in 4-D.

2.1. The geometric product and multivectors

Let ¢, denote the geometric algebra of n-dimensions
— this is a graded linear space. As well as vector addition
and scalar multiplication we have a non-commutative
product which is associative and distributive over
addition — this is the geometric or Clifford product.
A further distinguishing feature of the algebra is that any
vector squares to give a scalar. The geometric product of

(a) B=anb (b)

Fig. 1. (a) The directed area, or bivector, a A b. (b) The oriented
volume, or trivector,aAbAc.

two vectors a and b is written ab and can be expressed as
a sum of its symmetric and antisymmetric parts

ab=a‘b+anb, (1)

where the inner product a-b and the outer productaab
are defined by

a-b=1(ab+ba), anb=1%(ab— ba). (2

The inner product of two vectors is the standard scalar or
dot product and produces a scalar. The outer or wedge
product of two vectors is a new quantity we call a bivec-
tor. We think of a bivector as a directed area in the plane
containing a and b, formed by sweeping a along b (see
Fig. 1).

Thus, b A a will have the opposite orientation making
the wedge product anti-commutative as given in Eq. (2).
The outer product is immediately generalizable to higher
dimensions — for example, (a A b) A ¢, a trivector, is inter-
preted as the oriented volume formed by sweeping the
area a A b along vector c (see Fig. 1). The outer product of
k vectors is a k-vector or k-blade, and such a quantity is
said to have grade k. A multivector is made up of a linear
combination of objects of different grade, i.e., scalar plus
bivector, etc. GA provides a means of manipulating
multivectors which allows us to keep track of different
grade objects simultaneously — much as one does with
complex number operations. For a general multivector
X, the notation {X ) will mean take the scalar part of X.
The highest grade element in a space is called the
pseudoscalar. The unit pseudoscalar is denoted by I and
is crucial when discussing duality.

We now end this introductory section by giving a very
brief review of the geometric algebra approach to linear
algebra. A more detailed review is found in Ref. [12].

Consider a linear function f which maps vectors to
vectors in the same space. We can extend f'to act linearly
on multivectors via the outermorphism, f, defining the
action of f on blades by

ray) =fa)af@)n - Afla,). G)

We use the term outermorphism because f preserves the
grade of any r-vector it acts on. We therefore know that
the pseudoscalar of the space must be mapped onto some

f@iraz A -
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multiple of itself. The scale factor in this mapping is the
determinant of f

[ ) = det( f)L 4)

This is much simpler than many definitions of the deter-
minant enabling one to establish most properties of
determinants with little effort.

3. The geometric algebra for computer vision

This section aims to give the formulation of the projec-
tive geometry and algebra of incidence required for the
treatment of problems in computer vision in a framework
with a strong geometric representation character and
amenable algebraic manipulation facilities. Next, we will
model the camera and the visual space in the geometric
algebra.

3.1. The 3-D geometric algebra of the camera

It is important for real applications to regard the
signature of the modelled space to facilitate the computa-
tions. In the case of the modelling of the image plane
using homogeneous coordinates, we adopt 43 .o of the
ordinary space, E3, which has the standard Euclidean
signature. The basis for the 3-D space has 23 =8 ele-
ments given by

L, {‘71,0'2,0'3}, {0'10'2,0203,0'30'1}, {010203} =1.
—— - — 2N J

2 v
scalar vectors bivectors trivector

©)

The highest grade element is a trivector called the
pseudoscalar. It can easily be verified that the pseudosca-
lar 6,6,05 squares to — 1 and commutes with all multi-
vectors in the 3-D space. We therefore give it the symbol
I.1n a space of 3-D, we can construct a trivectora Ab Ac,
but no 4-vectors exists since there is no possibility of
sweeping the volume element aAbAac over a fourth
dimension. Multiplication of the three basis vectors
{o:} by I results in the three basis bivectors; 6,05 =
Ioy, 630, =I0,, 6,0, = Io;. These simple bivectors
rotate vectors in their own plane by 90°, e.g,
(0102)0, =01, (0203)0, = — 03, ectc. Identifying the
i, j, k of the quaternion algebra with 6,03, — 30, and
010,, we see that the famous Hamilton relations are
recovered i2=j>=k?=ijk= — 1. The quaternion
algebra is therefore seen to be an even subalgebra of the
3-space or %3.¢.0-

3.2. The 4-D geometric algebra of the visual space
Since we selected ¥ ¢ o for modelling the image plane

we are forced to adopt the same signature for the 4-D
visual space. This can be achieved using the 4-D geomet-

ric algebra %, 3 o which we associate with the projective
space P>. This is spanned with the following basis:

Lo, v s 7273037171725 Y4V 15 Y425 V4)s »
- %f—/ I\ J

scalar 4 vectors 6 bivectors
ka > I 5 (6)
H_} H_)

4 p. di tors p d lar

where y2 = + 1,92 = — 1 for k =1,2,3. The pseudo-

scalar is I = y;7,7374 with

I’ = (r1727374) (1727374) = — (7374) (7374) = — 1. (7)

The fourth basis vector y, can be seen also as selected
direction or projective split [14] in 4-D. The basis element
74 helps to associate multivectors of the 4-D space with
multivectors of the 3-D space. The role and use of the
projective split for a variety of problems involving the
algebra of incidence can be found in Ref. [14].

3.3. Algebra of incidence

Here we will outline the approach pioneered by Hes-
tenes for using geometric algebra to discuss the algebra of
incidence. The basic projective geometry operations of
meet and join will be shown to be easily expressible in
terms of standard operations within the geometric alge-
bra. For a more extended discussion we refer the reader
to Ref. [13].

We have seen that in Euclidean spaces of 3-D the unit
pseudoscalar squares to — 1. In %, 3 0, it is easy to see
that this is also the case. If y;, i = 1,2, 3,4, are our basis
vectors in the 4-D space, and 77 = — 1forj = 1,2,3, and
73 = + 1, then

= (r1727374) (1727374) = (727374) (V27374)
=—(yays4) 374) = — L. ®)

The sign of I? depends on the signature of the space. In
a given space, any pseudoscalar P can be written as
P = «l, where o is a scalar. If I ™! is the inverse of I, so
that 11! = 1, then

Pl '=oll ' =0=[P], )

where we have defined the bracket of the pseudoscalar
P, [P], as its magnitude, arrived at by multiplication on
the right by I 1. The sign of the bracket does not depend
on the signature of the space and as such it has been
a useful quantity for the non-metrical applications of
projective geometry.

To introduce the concepts of duality which are so
important in projective geometry, we define the dual
A* of an r-vector A as

A% = Al L, (10)

We use the notation A* to relate these ideas of duality to
the notion of a Hodge dual in differential geometry. Note
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that in general I~ ! may not commute with A. From the
definition of the unit pseudoscalar, we see that the dual
of an r-vector is an (n — r)-vector (e.g., duality of lines
r=1)(n—r=3—1=2 in the 3-D space). In an
n-dimensional space, if A is an r-vector and B is an
s-vector then using the fact that BI"! = B-1~! (since
BI ! must be of grade (n — s))) and the identity

A, (B,-C,)= (A, AB)-C, forr+s<t, (11)
we can write

ABI"Y)=ABI )=(AAB)I '=AABI "
(12)

Using the definition of the dual we therefore have
A-B* = (AAB)*. (13)

Eq. (13) illustrates the duality of the inner and outer
products. If r + s = n, then A A B is the highest grade part
of AB, i.e., the pseudoscalar part, and it then follows that

[AAB] =(AAB)[ ! =A-B* (14)

In this case, we can express the bracket in terms of duals
and as such, relate the inner and outer products to
non-metrical quantities. It is via this route that the inner
product, which is normally associated with a metric, is
used in a non-metrical theory such as projective ge-
ometry. We note at this point that since we have reduced
duality to a simple multiplication by an element of the
algebra, there is no need to introduce a special operator
or any concept of a different space.

In an n-dimensional geometric algebra one can define
the join J = A/\B of an r-vector A and an s-vector B by

J=AAB. (15)

If A and B have a common subspace, the join is not given
simply by the wedge but also by the subspace that they
span. In what follows, we will use A for the join only
when the blades A and B have a common subspace,
otherwise we will use the ordinary exterior product, A.
J can be interpreted as a common dividend of lowest grade
and is defined up to a scale factor. It is easy to see that if
(r 4+ s) = n then J will be the pseudoscalar for the space.

If A and B have a common factor (i.e., there exists
a k-vector C such that A = A’C and B = B'C for some
A’,B’) then we can define the “intersection” or meet of
A and B as A v B [13] where

(AvB)* = A* A B*. (16)

That is, the dual of the meet is given by the join of the
duals. In Eq. (16), we must be slightly careful to specify
what space we take the dual of (A v B) with respect to.
The dual of (A v B) is understood to be taken with respect
to the join of A and B. In most cases of practical interest
this join will be the whole space and the meet is therefore

casily computed so that we can use Eq. (13) to obtain
a more useful expression for the meet as follows:

AVB = (A* AB¥)I = (A* AB¥(I I = (A*-B).  (17)

We therefore have the very simple and readily computed
relation of A v B = (A*-B). The above concepts are dis-
cussed further in Ref. [13].

4. Conics and the Pascal’s theorem

The role of the conics and quadrics is well known in
the projective geometry [19]. This knowledge led to the
solution of crucial problems in computer vision [20,21].
The Kruppa’s equations which relies on the conic con-
cept, have been used in the last decade to compute the
intrinsic camera parameters [22]. In this work, we ex-
plore further the conics concept and use the Pascal’s
theorem to establish an equations system with clear geo-
metric transparency. Next, we will explain the role of
conics and that of Pascal’s theorem in relation with
a fundamental projective invariant. This section is mostly
based on the interpretation of the linear algebra together
with projective geometry in the Clifford algebra frame-
work realized by Hestenes and Ziegler [13].

When we want to use projective geometry in computer
vision we utilize homogeneous coordinates representa-
tions, doing that we embed the 3-D Euclidean visual
space in the 3-D projective space P* or R* and the 2-D
Euclidean space of the image plane in the 2-D projective
space P? or R3. In the geometric algebra framework, we
select for P? the 3-D Euclidean geometric algebra
%3.0.0 and for P? the 4-D geometric algebra % 3 . The
reader should see Ref. [23] for more details relating the
geometry of n cameras. Any geometric object of P3 will
be linear projective mapped to P? via a projective trans-
formation, for example, the projective mapping of
a quadric at infinity in the projective space P? results in
a conic in the projective plane P2

Let us firstly consider a pencil of lines lying on the
plane. Any pencil of lines is well defined by a bivector
addition of two of its lines: 1 =1, + sl, with seRu
{ — o0, + c0}. If two pencils of lines 1 and I' =1, + 5’1,
can be related one-to-one so that 1 =1 for s = s’ we can
say that they are in projective correspondence. Using this
idea, we will show that the set of intersecting points of
lines in correspondence build a conic. Since the intersect-
ing points x of the line pencils 1 and I’ fulfill for s = 5" the
following constraints:

xAl=xAl, +sxAl, =0,
XAl'=xAl, +sxAly, =0. (18)

The elimination of the scalar s yields a second-order
geometric product equation in x

(xAl) xAl) —(xAl) (xAl) =0. (19)
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Fig. 2. (a) Two projective pencils generate a conic. (b) Pascal’s theorem.

We can also get in another way the parameterized conic
equation, simply computing the intersecting point x tak-
ing the meet of the line pencils as follows:

x =, +sl,) v, +sl;)
=L vl +sl, vl +1, vI) + sl v 1. (20)

Let us for now define the involved lines in terms of wedge
of pointsl, =aab,l, =aAb, I, =a’Abandl, =a’ Al
such that 1, vI, =band I, vI; = b’ (see Fig. 2a). Calling
b =1,vIl, + 1, vl, =d + d' in the last equation we get

X =b + sb” + 5%V, (21)

which represents a non-degenerated conic for
bAb”Ab =bA(d+ d)Ab #0. Now, using this equa-
tion let us compute back the generating line pencils.
Definel; =b"Ab, 1, =b"Aband I3 =bAb” and com-
pute its two projective pencils using Eq. (21)

bax=sbAb” +s?bab = s(l3 — sl,),
bAx=bAb+sbaAb =1, —sl;. (22)

Considering the points a, a’, b and b’ and some other
point y lying in the conic depicted in the Fig. 2a and
Eq. (18) for s = ps’ slightly different to s" we get the
bracket expression

[yab][ya'b] — p[yab’][ya’h] =0,

, _ Lyabliya']
[yabIlyab]

for some p # 0. This equation is well known and repres-
ents a projective invariant which has been used quite
a lot in real applications of computer vision. For a tho-
rough study about the role of this invariant using
brackets of points, lines, bilinearities and the trifocal
tensor see Bayro and Lasenby [16]. Now evaluating p in
terms of some other point ¢ we get a conic equation fully
represented in terms of brackets

(23)

o, [cab][ca’d’] , e
[yab][ya'b’] — m [yab][ya'b] =0,
[yab][yabJ[abe][a'be’]
— [yab'][ya’b][abc'][a’b'c¢’] = 0. (24)

Again, we get a well-known concept which says that
a conic is unique determined by the five points in general
position a,a’,b and b’ and ¢. Now considering Fig. 2b, we
can identify three collinear intersecting points o, ®, and
a3. Using the collinearity constraint and the lines which
belong to pencils in projective correspondence we can
write a very useful equation

Ay NAy N3 = 0,
(@ Ab)v(cAre)Aa((@ ra)v(b Ac)A
((c"Aa)v (b’ Ab) =0. (25)

This expression is a geometric formulation using
brackets of the Pascal’s theorem. This theorem proves
that the three intersecting points of the lines which con-
nect opposite vertices of an hexagon circumscribed by
a conic are collinear. Eq. (25) will be used in later section
for computing the intrinsic camera parameters.

5. Computing the Kruppa equations in the geometric
algebra

In this section, we will formulate in two ways the
Kruppa equations in the geometric algebra framework.
Firstly, we derive the Kruppa equation in its polynomial
form using the bracket conic equation (24). Secondly, we
formulate them in terms of purely brackets. The goal of
the section is to compare the bracket representation with
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Fe
M3

Fig. 3. The camera model: projective mapping of the visual 3-D
space onto the image plane.

the standard Kruppa equations. In the first place, we will
briefly explain how we model the camera transformation.

5.1. The scenario

When we use a camera to take images of the 3-D visual
world the camera itself implements the projective trans-
formation from P? to P? (see Fig. 3).

If the scene is near to the camera, this projective
transformation in any object frame F, of P is called
pinhole camera model [24] and it is given by

o, Y U 1 0 0O
0 a, v 0 1 0 0|MkE, (26)
0o 0 1 0010

K Po

where K is the matrix of an affine transformation and
ME¢ is a 3-D rigid motion which transforms the frame
F o to the frame 7 ¢ of the optical center C and it is given
by the 4 x 4 matrix

. R 7
Mk = _— 27)

In this paper, we will set for the first camera %, on F ¢,
thus its projective transformation becomes

P, =KP ! 6—KIO 28
L= O[W J— [110]. (28)

Note that we use the notation [I|0] for the resulting
3 x 4 matrix

I 0
P06T1.

When we are considering any i-camera after a particular
motion, its transformation regarding the frame F, set at
the C of the first camera is given by

P; = KP R0 = K[R 29
i = 0|:6~T 1:|— [R]t]. (29)

The scenario we will consider for the computations in the
whole paper is depicted in Fig. 4. The camera model used
here is the pinhole model and P; stands for a projective
transformation for the i-camera.

5.2. Standard Kruppa equations

This approach uses Eq. (24) for the conic in terms of
brackets considering five points a,b,a’,b’,¢” which lie on
the conic:

[cab][ca’b'][ab’c][a’bc ]
— [cab’][ca’b][abc][a’b'c’] =0,

[a’b'c][abc]

[abc] [a,b/c] — m

[ab’c][a’bc] = 0. (30)

Now, a conic at infinite Q;,¢ in P* can be defined employ-
ing any imaginer five points lying on the conic, e.g.,

—
~
-~
—
(=)

i 1 0 0 i
A=| | B= , A= || B=[_[ C=||
0 1 i
0 0 0 0
(€29)
where i = — 1. Note that we use upper case letters to

represent points of the projective space 2° represented
in 9, 3,0. These points lie on the conic, thus they fulfill
the propricty A-A=B-B=A""A'=B"-B'=C'-C'=0.
Since these points are translation invariant their projec-
tions in any image plane are given by a = K[R|t]A =
KRA, b=K[R|{]B=KRB, a =K[R|t]JA' = KRA/,
b = K[R|{]B' = KRB, ¢ = K[R|{]C’ = KRC". The
rotated points RTA, R™B, RTA’, R"B’ and R"C’ lie also
at the conic at infinite, because they fulfill the property
A(RR")-A = B(RR")'B = A(RR")-A’ = B(RR")-B' =
C'(RR™)-C' = 0. Using these rotated points the rotation
R of the camera transformation in Eq. (30) is canceled,
thus this equation depends only of K

[KRRTAKRR'B¢][KRRTA'’KRR™B'c]

[KRRTA’/KRR'B'KRR"C'J[KRRTAKRR'BKRR"C’]
[KRRTAKRR'B'KRR'C'J[KRRTA’KRR'BKRR"C’]

‘[KRRTAKRR'B'¢][KRRTA’KRR"Bc] =0,

<[KAKBc¢][KA'KB'c]
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l_[inf

---115"

K [Ri|t]
T

e

K, [Ra|ta]

|2_ C

Fig. 4. The conics at infinity, the real 3-D visual space and n uncalibrated cameras.

[KA'KBKC'I[KAKBKC']
[KAKB'KC'J[KA'KBKC]

‘[KAKB'¢][KA'KBc] = 0. (32)

We can further extract of the brackets the determinant
of the intrinsic parameters in the multiplicative ratio
of the previous equation reducing the invariant to a con-
stant

1y — LKAKBKCI[KAKBKC']
" T IK(ABC)I[K(ABC))]

_ [K(A'B'C')][K(ABC')]
" [K(AB'C')][K(A'BC')]

_ det(K)[(A'B'C')]det(K)[(ABC")]

" det(K)[(AB'C')]det(K)[(A'BC)]

_ [A'B'C)I[(ABC)] (33)

[(AB'C)][(A'BC)]

Substituting the previous values of A,B,A,A’,B’,C’ in
this equation we get the value of Inv = 2, this value will
be used for further computations later on. Eq. (33) is as
expected invariant to the affine transformation K. Thus,

the bracket equation (23) of the projective invariant can
be written as

[KAKBc][KA'KB'c] — Ino[KAKB'¢c][KA’KBc] =0.
(34)

In terms of matrices the relation of a point ¢ which lies on
the image of the absolute conic ¢ at infinity or a line
tangent I, to the dual of this conic ¢* can be expressed as

0 =c"%c =c"6"c = (c"6¢")¢ (Gc) = 1T6*1., (35)
where ¥ = K"TK ! and $* ~ ¢~ ! = KK". In this equa-
tion, according to the duality principle, the points and

lines are related according ¢ = 1. Thus, it is true ¢ =
KKT"l,. Substituting this value in Eq. (34) we get

[KAKBc][KA'KB'c] — In[ KAKB'¢][KA’KBc] =0,
[KAKBKK".JTKA'KB'KK,]

— In[KAKB'KK™,][KA'’KBKK".] = 0,
[K(ABK")I[K(AB'K,)]

— In[K(AB'K™,)][K(A'BK",)] = 0,
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det(K)[ABK I, ]det(K)[A'B'K"1]

— Invdet(K)[AB'KI, 1det(K)[A'BK"I,] = 0,
[ABK"L.J[AB'K",]

— Ino[AB'K".J[A'BKL.] = 0. (36)

As in the next formulas, we will utilize the so-called
epipole for the computation, let us explain it briefly. An
epipole is the null vector of the fundamental matrix F.
This matrix fulfills the constraint af Fa; = 0 for any cor-
respondent points of a couple of cameras (see Ref. [9] for
more details).

Returning to the problem we see that fortunately the
matrix of the intrinsic camera parameters turns up in
each bracket only once. Using k;; of K and the points of
the conic at infinity A, A’,B,B’,C’ and the epipolar line
. =exy=[p;,p2,p3]" x[1,7,0]" = [ — p3t,p3,p17 —
p2]" (e is the epipole and the point y = [1,71,0]" which
lies at the line at infinity parameterized with the projec-
tive parameter t), we can write

—ki11p3t
— k12p3T + kaaps 8 (37)
—ki3pst + kazps + pit—p2

K", =

which together with the value for Inv =2 simplifies
Eq. (36) to a second-order polynomial with respect to 7 as
follows:

[ABK"L.JTAB'K"1.] — Inv[AB' K", ]J[A'BK"1.]
=4pytp, — 2pit? — 2k}, p3 — 4ky3papit + 4kyspsps
— 2ki3p3t® — 2kiyp3c® — 2k33p3
—2p3 — 2k}, p3t® + 4ky,p3thys — 4ky3psTps
+ 4ky3p3thys + 4ky3pst3py. (38)

Expressing the polynomial in the form P(r) =k, +
kit + k,7?, we get finally the following coefficients:

ko = —2k3,p3 +4ka3psp, — 2k33p3 — 2p3,
ky =4pyp; — 4ka3pspy + 4ki2plkas
— dky3p3pa + 4ki3pikas,
ky = —2pi — 2kisp3 — 2ki>p3 — 2kiip3 + 4kispsp.
(39)

I. can also be considered as an epipolar line tangent to
the conic in the first camera, thus according to the
homography of a point lying at the line at infinity of the
second camera we can compute l. = F[1,7,0]". Note
that the fundamental matrix can be expressed in terms of
the motion between cameras and the K of the camera, i.c.,
F = K~ "[t].R;, KT where [t], is the tensor notation of
the antisymmetric matrix representing the translation
[9]. The term E = [t]« R is called the essential matrix

[25]. Using the new expression of 1. we can gain sim-
ilarly as above new equations for the coefficients now
called ki;. In this computation, F relates the second
camera. Taking now these equations for the two cameras
we can write the well-known Kruppa’s relations

kyky — kyk, =0,
koki — kiky =0,
koky — kipk, = 0. (40)

We get up to a scalar factor the same Kruppa’s equations
presented by Luong and Faugeras [24]. The scalar factor
is present in all of these equations, thus it can be canceled
straightforwardly. The algebraic manipulation of this
formulas was checked entirely using a Maple program.

5.3. Kruppa equations using brackets

In this section, we will formulate the Kruppa coeffi-
cients kg, ky,k, of the polynomial P(r) in terms of
brackets. This kind of representation will obviously eluci-
date the involved geometry. First, let us consider again
the bracket [ABK'1.] of Eq. (36). Since we can write

— P3T 0 — D3
K", = KT D3 =K' ps |+K'[ 0O |r(41)
P1T — D2 — D2 D1

the bracket can be split in two brackets, one independent
of 7 and another depending of it

0 — D3
[ABK"L.] = | ABK"| p; +[ABKY 0 [r]. (42
— P2 D1

In short, [ABK"l.] = a; + th;. Now using this bracket
representation, Eq. (36) can be written as

[ABK"L.JTAB'K".] — Inv[AB' K", ]J[A'BK"1.] = 0,
(ay + thy)ay + thy) — Inv(as + ths)(as + thy) =0,
agd; + 'L'blaz + al'L'bz + T2b1b2

— Inv(azay + azast + byast + bybst?) =0,

aja, — Inv(asay)
%—J

ko

+ t(ayby + bya, — Inv(asby + asbs))

M
+ 1X(byby — Inv(bsby)) = 0. (43)
%K—J

k2
Now, let us take a partial vector part of K'l, and call
it K"y := [ — ky1p3, — k1aps, — kizps + p1]" and the
“rest”-part as K"l :=[0,k,,p3,k,3p3 — p,]". Using
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both parts, we can write the coefficients of the poly-
nomial in a bracket form as follows:

ko = [ABK"l,,JTAB'K"1.,]

— In[AB'K™L,, TA'BK 1,7, (44)
ki = [ABK™t,JTA'BK"L,,] + [ABK"l, ][A'BK"L,]

— Ino[AB'K™I,, JTA'BK™1,, ]

— In[AB'K",, JTA'BK™1,, ], (45)
k> = [ABK™L, JTAB'’K"],]

— In[AB'K",; JTA'BK ™, . (46)

Since A,B,A’,B’ and Inv are known, given an epipole
e = (p1,p2,p3)" we can finally compute the coefficients
ko,ky and k, straightforwardly. Be aware that these
coefficients denoted by k; are not the intrinsic parameters
k;;. The striking aspect of these equations is twofold.
They are expressed in terms of brackets and they depend
of the invariant real magnitude Inv. This can certainly
help us to explore the involved geometry of the Kruppa
equations.

Let us first analyze the k’s. It should be sufficient from
ko, k, and k, to explore the involved geometry if k, and
k, are expressed as follows:

ko = aja, — Inv(asas) = [ABK"l, JTA'B'K"l,,]
— Inl[AB'K"1,, JTA'BK"1,, ]
1 i 0 i1 0
i1 kysps 00 ky>ps
0 0 ky3ps —pa 1 i kysps —p>

11 0 i 0
— Inv i 0 k22p3 01 k22p3 >

0 i kysps —p> 1 0 kysps —p>
@7

kz = bl b2 — InU(b3 b4) = [ABKTlcl][A/B,KTlcl]

— Inv[AB'K™1,; ][A'BK™t,]
i —ky1p;
= i1 —kiaps
0 0 —kisps+py
i1 —ky1p3
0 0 —kisp3
i —kyzps + Py

11 —kyi1p3
—Inv||i O — k12p3
0 i —kizps+pt
i —ky1ps
0 1 — k123 - (48)

1 0 —kyzps +py

Let us analyze the effect of the camera motions in these
two equations. If the camera moves on a straight path
parallel to the object the epipole lies at infinity, i.e.,
p3 = 0, in this case the intrinsic parameters become zero
resulting a trivial polynomial, i.e., we cannot get the
coefficients ky, k; and k5. On the other hand, for example
trying the values — ky3ps + p; =0 or kyzps —p, =0
the rest of the brackets will have the rank two and their
determinant value is also zero. This simple analysis
shows that analyzing the brackets for certain kinds of
camera motions we can avoid certain camera motions
which generate trivial Kruppa’s equations. It is also in-
teresting to see that for ko = 0 and k, = 0 we have also
conic equations. So in order to avoid trivial equations we
have to consider always ko # 0 and k, # 0. In other
words, KTl.; and K1, should not lie on the image of the
absolute conic.

Now let us consider the invariant real magnitude Inv
of the Kruppa’s bracket equation (36).

[ABK"LJ[A'B'K",] — In[AB'K™.J[A'BK™L,] =0,

_ [ABK"LJ[ABK"L]

Inv = :
" T TABK™.J[A'BKL]

(49)

That the invariant value I'nv like in Eq. (23) plays a role in
the Kruppa’s equations is a fact that has been over-seen
so far. This can be simply explained as the fact that when
we formulate the Kruppa’s equation using the condition
c"%c = 0, we are actually implicitly employing the invari-
ant given by Egs. (23) and (49).

6. Camera calibration using the Pascal’s theorem

This section presents a new technique in the geometric
algebra framework for computing the intrinsic camera
parameters. The previous section used the equation of
Eq. (24) to compute the Kruppa’s coefficients which in
turn can be used to get the intrinsic camera parameters.
Along this lines we will proceed here.

In Section 4, it is shown that Eq. (24) can be refor-
mulated to express the constraint of Eq. (25) known as
Pascal’s theorem. Since the Pascal’s equation fulfill
a property of any conic, it should be also possible
using this equation to compute the intrinsic camera
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parameters. Let us consider the three intersecting points
which are collinear and fulfill

(@ Ab)v(c'ac) A(@ Ara)v(b Ac)

C J ¢ )

A Ara)v(b' Ab) =0. (50)
%F—J

In Fig. 5, at the first camera, the projected rotated points
of the conic at infinity RTA, R™B, RTA’, R"B/, R'C’ are
a=K[R|0O]JRTA = KA, b=K[R|0]JR"™B=KB, a’' =
K[R|0JRTA' = KA, b’ = K[R|0]R"B' = KB’ and ¢ =
K[R|0]C' = KC.

The point ¢ = KK"l, depends of the intrinsic para-
meters and of the line 1, tangent to the conic computed in
terms of the epipole = [py,p,,p3]" and a point lying
at the line at infinity of the first camera 1 =
[P1,p2,p31" x[1,7,0]". Now using this expression for
1. we can simplify Eq. (50) and get the bracket equations
of the a’s

([a’be]e — [a’be]c’) A ([a’abJe — [a’ac]b’)
A([c’'ab’]b — [c’ab]b’) =0

< ([KA'’KBKC]KK"l, — [KA'’KBKK"I,]KC)
A[KA'KAKBIKK", — [KA'KAKK"]KB)
A([KC'KAKBIKB — [KC'KAKB]KB) =0, (51)
(det(K)K(TA'BC'IK™, — [A'BK"L.]C))
A (det(K)K([A’AB'IK ", — [A’AK™1.]B")
A (det(K)K([C'AB']B — [C'AB]B) = 0 (52)
< det(K)*K([A'BC'IK™], — [A’'BK"1,]C))
A([A'ABTKTL, — [A’AK".]B)
A([C'AB]B — [CAB]B) =0

< ([A'BCKTL, — [A'BK".]C)

L2t

A (TA’ABIKTL, — [A’AKTL,]B)

.

~
a2

A ([CABJB — [C'AB]B) =0. (53)

Y
a3

I,

Fig. 5. Pascal’s theorem at the images conics.
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Note that the scalar det(K)® and K are canceled out
simplifying the expression for the a’s. In the next section,
the computation of the intrinsic parameters will be done
first considering that the intrinsic parameters remain
stationary under camera motions and second when these
parameters change.

6.1. Computing stationary intrinsic parameters

Let us assume that the & is attached to the optical
center of the first camera and consider a second camera
which has a motion with respect to the first one of
[Ri|t;]- Accordingly, the involved projective trans-
formations are given by

— K[I10]°%, (54)
P, =P[R, |t;]7! (55)

and their optical centres by C; = (0,0,0,1)T and C, =
[Ry|t;]Cy. Thus, we can compute their epipoles as
e;; = P,Cy, e, = PG,

Next, we will show by means of an example that the
coordinates of the points a;, a, and a3 are entirely
independent of the intrinsic parameters. This condition is
necessary for solving the problem. Let us choose, for
example, a camera motion given by

0 —1 0| 2
[Ri|t:1=|1 0 0 | —1} (56)
0 0 1| 3

_3ik11'f_2k12'5+2k22_2k11'f
%2 = — 6i(k127 — k2») )
—3k11T—4ik12T+4ik22 +2ik11‘[

1—i
ay=|1—il (57)
2

Note that a3 is fully independent of K.

According to the Pascal’s theorem, these three points
lie on the same line, therefore by replacing these points in
Eq. (25) we get the following second-order polynomial
in T

— 401’(%2'[2 — 521k%112 — 161k11fk22 + 16lk11'[2k12
— 401k%2 + 801k12Tk22 =0. (58)

Solving this polynomial and choosing one of the solu-
tions which is nothing else than the solution for one of
the two lines tangent to the conic we get

_ 16Ikykyy — 80Tk s kyy + 24/14ky 1 ks 59)
T 2(—40Ik3, — 52IK3, + 161k, ky2)

Now, considering the homogeneous representation of
these points

T
a4 = [Ofilafxizﬂm]T ~ |:O(L1 06;2 1:| (60)

%3 :sz

we can finally express their coordinates as follows:

— (2ky,

— 10k12 + 3ik11«/ 4 + Slklz + 2](12\/

011 =

2ikyy — 10iky, — 3./ 14k, —

4k, — diky5 /1

21(—2lk12 —3k12\/ + 13lk11)

101k11 + 2\/ kll (61)
16k11 + 21](11\/

0y, =
' 2lk11 — 101k12 —3«/ kll —4k12 —4lk12«/ 14 — 16k11 +2lk11«/

(1 — i)Q2ikyy — 10iky> — 3/14ky;)

o = b
2 5](11 —4k12 + ikllﬂ/ 14 + 2ik12 + 3k12\/ 14— 13lk11 + ik121/ 14

— ikya/14 — 3ky, +2ik11\/—4—3k12f (64

llikll + 8ik12 + 3\/ kll _6k12

Oza =

Skyiy —4kyy +iki1 /14 + 2iky5 + 3k /14 — 131k, + iky2 /14

For this motion, the epipoles are e;, =(2ky; — ky; +
3k, — ko + 3k23,3)" and ey = (kyy + 2ky5 —3ky3,
2k,, — 3k,3, — 3)T. Now using the rotated conic points
given by Eq. (31) and replacing this ey, in Eq. (53) we can
make explicit the o’s:

(=34 3kt
ay = 3]{11‘5 — iklzT + ik22 + 2ik11T — Sklzf + 3k22 .

ik11f + 3k12T — 3k22 + iklzf - ikzz

Now considering the case of exact orthogonal image axis
we can set in previous equation k;, = 0 and get

2i — 3 /14 + 10 + 2i,/14

T2+ 314+ 161+ 214

1
o :26 s
T L3 1A+ 16i+2/14
(1 + i) — 21 + 3/14)
%21 = 3 > (67)
—si+ /14— 13

o1

(65)

(66)
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— 11 +3i /14 - 3i — 2,/14
: (68)
—5i4 /14— 13

The coordinates are indeed independent of the intrinsic
parameters. We test with the Maple program several
times using other conic points, we get always expressions
for the o’s independent of the intrinsic parameters.

After this illustration by an example we will get now
the coordinates using any camera motion, for that let us
define s = [s1,5,,53]" = [I|0][R;|t;]C;. Using this
value, the epipole is ey, = K[I|0][R;|t;]C; = Ks.
Note that in this expression the intrinsic parameters are
separate from the extrinsic ones. Similar as above using
the general camera motion and the epipole value the
coordinates for the intersecting points read

K22 = —

(1) Use 8 or more point correspondences between two
cameras and a controlled rotation about only one
axis and a 3-D translation between the cameras.

(2) Calculate the actual values of the homogene-
ous a; by using the known camera motion and
Eqgs. (69)—(72).

(3) Calculate K™l, = KTe;, x[1,7,0]T with the epipole
in the first camera, evaluated from the point corre-
spondences. Note that in K" are the unknown intrin-
sic parameter. To fulfill Pascal’s theorem solve the
equations system to get © (Eq. (59)).

(4) Replace 7 in Eq. (57) and calculate the homogeneous
representation of these intersection points to get
quadratic polynomials which depends on the four
unknown intrinsic parameters. Note that the intrin-

(— 5182 + Is3 /(53 4+ 53 + 53) — Is3 — Is? + 5. /(s? + 53 + 53) — Is,53) (69)

oy = — >
(—Isysy — s3/(sT 453 +53) — 53 — 51 + Is;/(sT + 53 + 53) + 5253)
— 2(s3 + s?)
A1 =

(70)

— Is,84

—533/(57 + 53 +53) — 53 — 5t + I ST + 53 +53) + 5055
— 1 —D(Is;Sy + S3+/(s3 + 5% + 53
( Jsys, 3/ (51 2 53)) (71)

3%) 5
—Isy5y — 53 /(57 + 52 +53) + 57 + 53 +51/(52 + 53 +53) —Isys;3

.y I(Is1 5y + 53:/(s7 + 5% 4+ 53) + Is; /(53 + 53 + 53) + 5553 + Is? + Is3) 72)
22 = .
— Isysy —s3/(sT + 53 4+ 53) + 57T + 53 +51/(51 +53 +53) — Isys3

Note that the intrinsic parameters are totally canceled
out. We have then Egs. (69)-(72) which allow us to
compute the actual values of oy1,051,012,0,,. Now re-
placing Eq. (59) of 7 in the entries of o; and o, given by
Eq. (57), we obtain the equations for oy,051,0, and
o, depending of the intrinsic parameters k; ;. Equalizing
these equations with their real values obtained pre-
viously, we gain four quadratic equations which depend
only of four unknown intrinsic parameters. Thus, we
should find another set of equations to solve the problem.
The way to do that is simply considering the second
camera with its epipole e,;. Since we are assuming that
the intrinsic parameters remain constant we can conse-
quently gain a second set of four equations depending
again of the four intrinsic parameters. Both set of equa-
tions help to find the four intrinsic parameters. Since this
is a system of quadratic equations we resort to an iter-
ative procedure for finding the solution. First, we tried
the Newton-Raphson [27] and the “Continuation
method” [9]. These methods were not practicable
enough due to their complexity. We used instead a
variable in size window minima search which through
the computation ensure the reduction of the quadratic
error. This simple approach worked fast and reliable.
The procedure can be summarized in the following
steps:

sic parameters are not cancelled out because of
the insert of the real values from the epipole. Because
of the invariant properties of the a’s the poly-
nomials must be equal to the evaluated values of the
o’s in step 2. This leads to four quadratic equations.

(5) Proceed exactly as steps 2 —4 using the epipole
e,; in the second camera to obtain a new set
of four equations depending of the intrinsic param-
eters.

(6) Using the iterative procedure explained above find
K using the eight equations.

The interesting aspect here is that we require only two
views (one-camera motion) to find a solvable equation
system. Other methods gain for each camera motion only
a couple of equations, thus they require at least three
camera views (two-camera motions) to solve the problem
[9,22].

6.2. Computing non-stationary intrinsic parameters

In this case, we will consider that due to the camera
motion, the intrinsic parameters may have been changed.
The procedure can be formulated along the same pre-
vious ideas with the difference of that we compute the line
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I, using the fundamental matrix and a point lying at line
at infinite of the second camera as follows:

AR 1
Il.=|p5|x|t|~F|7]| (73)
3 0 0

The authors [9] used the same idea for computing I..
Now, these equations can be expressed as follows:

, a+ bt’
1 a b x\/1 a+ bt e
~F|l7|=|c d yl|7|=|c+di |~ 1
, n+ mt
0 n m z/\0 n+ mr o+ dv
(74)

Note that we get the mapping t = (a + bt')/(c + d7) in
the second camera.

Now similar as in the previous case, we will use an
example for facilitating the understanding. We will use
the same camera motion given in Eq. (56). The funda-
mental matrix in terms of the intrinsic parameters K of
the first camera, K’ of the second one and the camera
motion reads

k. k
_ 3K22K22
U2

F=K '[f]«xRK' ' = 0

(2k11 + 3klf‘))kZZk’ZZ o (kZZ - 3k23)k11 ,11

and substitute in the homogeneous coordinates of the «’s
uSing k12 = k’12 =0 we get

i(—5i—4+i/14) %)

Uy = — ,
" 5i+242i/14

—2+3i /14
% T etoId (79)

LSt 242i /14

o 10 — 10i

Y i 3i/e— 14
8+ 6i — /14 + 3i /14

Olpy = — 5 (81)
—4i—2+3i /14— /14

(80)

where
1—1i

azy =|1—1i
2

remains fully independent of the intrinsic parameters.
According to these results, the calibration procedure for

(ks — 3Kk ks

U2
where Uy = — 3k/22k22k13k/13 + k22k/22k/11k13 +
kyka3 K1k = 2kan koo Kiskin + 2kaskaa Kiikiy — 3kas

kyakiikyy.

Note that the value of the line 1. = [p},p5, p5]" x
[1,7,0]" is now computed in terms of the fundamental
matrix, ie., I, = F'[1,7,0]", where F now depends
of K (first camera) and K’ (second one). Similar as
above we compute the a’s and according the Pascal’s
theorem we gain a polynomial similar as Eq. (58). This
reads

(— 4ik3,k3; (13k5, % + 10k} 202 — 4k5, k4 7))/
((Bkaakaskyskis + kaakaoki1kys + kazkhskiikyy

— 2kyo koo K3kt 4 2ka3kh oK1k

— 3kaskhaki1kig)?) = 0. (76)

We select one of both solutions of this second-order
polynomial

o Ak, k1 + 61k, Ky, 1/14
B 20(ky ;2

(77)

0
U2
ki kK@K =) | s
Uy U2
1

U2

computing non-stationary intrinsic parameters com-
prises of the following steps:

(1) Use 8 or more image point correspondences and
a rotation about one axis and the 3-D translation.

(2) Compute the invariants a; using Egs. (85)—(88).

3

(3) Compute the F matrix according to Ref. [24].
(4) Considering
kl 1 0 kl 3 ’1 1 0 /13
0 kzz k23 and 0 k/zz k/23
0 0 1 0 0 1

for the first and second camera, respectively, in equa-
tion F=K TEK'"! and instead of 1. =e;, x
[1,7,0] we use I, = F(1,7',0)"(parameterized point
at infinity of the second camera), we can solve
Eq. (76) for 7’. Then substitute 7’ in the equations
for o; which are equalized with the values of the
invariants oj;.

(5) Proceed exactly as steps 2 —4 however in the
second image using instead of I, = e,; x[1,7",0] we
use I, = F'(1,7,0)" to get similar result as Eq. (76) for
7. Then substitute 7 in the equations for «j; which
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are equalized with the values of the invariants o;;. In
this way, we have gain another four quadratic equa-
tions depending only of the k;;.

(6) Solve eight equations to get K.

6.3. Decoupling the essential matrix of the intrinsic camera
parameters

If we consider now general motion

[RIt] =|r21 7122 T23 (82)

the fundamental matrix reads
F=K TEK'! (83)

-T

kiy 0 ks Eyy Ei; Ei;
=| 0 ki ks E;y Ei; Ex;

0 0 1 Es, Es, Eas
-1
i 0 13
x| 0 Kby Kkhs| . (84)
0 0 1

Using this equation, the rotated conic points given by
Eq. (31) and the tangent line 1. as Eq. (73), we can
compute by means of Eq. (53), the coordinates of the a’s
fully independent of the intrinsic parameters

o1y =i(E1 E3 +iEy 1 E3; —iE13 By Eyy —iE1; E3 s,
— iEy/vs + Ey1E}y + Ey E3y — EpEq By,
— EyEsEszp — Ezz\/a — E3Ef, — EsiE3,
+ EsE1Eqs + EsnEp Esy + Esz\/a)/
(iEy1E3; +iE\ E3; —iE;Ey Eyy —iE2E3 Es)
— iE12\/a — E31Efy — E31E3 + EpE Eos
+ EszEz Esy + Esz\/a — E; Ef; —EynE3
+ EpE1Eqs + ExnEsEs +E22\/E)a (85)
%1y =2(— Ey Ely — Es1E3; + EnzEqEqs
+ ExEz1Ez + Ezz\/a)/(iEuE%z +iE E3,
—iE13Ez Eyy —iE12E31 Esy — iElz\/g
— E31Efy — E31E3 4+ Es Eq Eos
+ EszEz Esy + Esz\/a — Ey; E}y —ExE3

+ EpE1Eq; + EpnEziEsp + Ezp/v3), (86)

21 = (1 - l)(EllE%Z + E11E§2 - E12E21E22

— E1zE3 B3y — Eqa/v3)/( — iE1 E,
—iE\1E3; +iE2Ey Exp +iE 2 E5 Esy

+ iElZ\/g — Ey Efy — E3 E3y + ExzEq Ey

+ EjzEz1Esy + Ezzﬁ —iE31E{y —iE31 E3,

+IE3;EiEyy +1E3Ey Epy + iEsz\/a)a (87)
% = —(E11E3; + E11E3y — E3Ez En

— E13E31Esy — Eqz3/vs — iE3  E}, —iE3 E3,

+iEszEqEqn +iEs Bz Erp + iE32\/E
— Ey B}, —E B3 + ExyEEjy +ExEzEs,

+ EppJU3)(—iE E3, —iE( 1 E3y +iE1, Ez Epy
+iE,E31E3y +iE 2\/vs — E31 ERy — E5 E3,

+ ExpE Evs + ExnEs Ezn + Ezz\/a
—iE31E{y —iE3 B3, + iEs2 E1(Ey,

+iEs EzEpn + iESZ\/E)s (88)
where
vy =2E11E12Ep1Eyy + 2E11E12E31Esp
+ 2E;1Ep E3 Ezy — ETE3 — ELES
— E5,E3 — E5EYy — E3,E3, — ESEL . (89)

Other authors use other way to separate the essential
matrix [9], after they have computed F and the intrinsic
camera parameters K, they use a direct factorization

E =[{].R = K"FK. (90)

The computation of the rotation R and translation ¢ from
E is a classical problem [25,26].

Finally, we will give some critical remarks about our
procedure comparing with a standard method. If we
know at least a rotation about one axis and a 3-D
translation and the eight or more correspondences, the
Pascal’s method can compute K. Using the expression
E = K'FK and at least a rotation about one axis and
a 3-D translation and eight or more correspondences, we
could not compute the intrinsic parameters. That is be-
cause we got quadratic expressions of the k;; terms. In the
case of non-stationer intrinsic parameters E = KTFK',
similarly we could not get sensible results due to the
quadratic expressions in the terms of k;;.

7. Experimental analysis

In this section, we test the Pascal-theorem-based
method using simulated and real images. We explore
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Table 1
Intrinsic parameters dependency of the type of camera motion

Type 1. Motion 2. Motion 3. Motion ki Min. num.
1 R, t, =0 R, t, =0 »ity =0 kit kiz, —, ka3

2 R,,t, =0 R,,t, =0 wix=0 —, ki3, ka2, ko3

3 Rxstx =0 Rx’[x =0 xolx = 0 ) k135k229k23

4 R.R,,t, =0 RR,,t, =0 «Ry,t, =0 —, ki3,ka2,ka3

5 R, R,,R.,t.=0 —_—,—,—

6 Rx k11=k137k227k23 1
7 R, ki1, kiz koo, kas 1
8 Rz k115k135k22’k23 l
9 Rny kllak13sk229k23 1
10 Rsz k11=k137k227k23 1
11 RyR. ki, ks, koo, kas 1
12 RzRny k11=k137k227k23 1
13 R.,t, =0 R.,t, =0 kit kiz,kan,kas 2
14 R, t, = R.,t, =0 kit ks, kaa,kas 2
15 R,,t, =0 R,,t, =0 kit kiz,kan,kas 2
16 R.R,,t, =0 RR,,t, =0 ki1, ki3, kaz, kas 2

firstly the effect of different kinds of camera motion in the
computing of the intrinsic camera parameters and then
the accuracy of the computation by increasing noise.

7.1. Experiments with simulated images

Using a Maple simulation we tested the Pascal’s-
theorem-based method to explore the dependency of
the type and the amount of necessary camera motions for
solving the problem and the noise sensitivity of the
method. The experiments showed that at least a rotation
about only one axis and displacement along the three
axes are necessary for the stabile computation of all
intrinsic parameters.

7.1.1. The role of the type of camera motion for the
computation of the intrinsic parameters

We generated various types of motion varying the
rotation and the translation. In Table 1, the subindex of
the rotation matrices indicates that the rotations are
about the x-, y- or z-axis and translations along the axes
are denominated by ¢,,t, and t, . Whent, =0ort, =0,
we cannot solve the problem as in cases 1-4. The case
5 shows that when the translation along the z-axis is zero
the camera epipoles lye at infinite making impossible the
computation.

The experiments show that at least a rotation about
one axis and displacement along the three axes are neces-
sary for the computation of all parameters as in cases
6-8. We see also that for cases of 9-12 rotations about
other axes leads to same result. Cases 13-16 simply
corresponds to separated axis translations, i.e., two-cam-
era motions are needed. When all of the intrinsic para-
meter can be computed like in for cases 6-16 we have

a clear minima in the quadratic error function as present-
ed in Fig. 6a. However, when it is indefinite like in cases
1-4, we do not have a clear minima, the value lies indefi-
nite along a minima line (see Fig. 6b).

These experiments indicate that we can use controlled
motion to simplify the estimation of the motion neces-
sary to be known for computing the intrinsic parameters.

7.1.2. Noise sensitivity analysis

In order to test the performance of our approach using
a Maple simulation, we carried out a similar motions
given in items 7 and 12 of Table 1. The coordinates of the
points were corrupted with zero mean Gaussian noise
with a standard deviation multiple of a pixel in a range
0 -3.0 pixel. In the simulation, 12 point correspondences
were used. For the tests, we used exact arithmetic of the
Maple program instead of floating point arithmetic of the
C language. For the first experiment, the camera was
firstly rotated about the y-axis and it had a small transla-
tion along the three axes. The true intern camera para-
meters were ki = k,, = 500 and k,3 = k,3 = 256. We
used an image 512 x 512 pixels.

Table 2 shows the computed intrinsic parameters. The
extreme right column of the table shows the error ob-
tained substituting these parameters in the polynomial
(76) which gives zero for the case of zero noise. The values
in this column show that by increasing noise the com-
puted intrinsic parameters have a tiny deviation from the
ideal value of zero. This indicates that the procedure is
relatively stable against noise. We could imagine that
there is a relative flat surface around the global minimum
of the polynomial. Note that there are discontinuities
shown by noise 1.25. However, as opposite to other
methods [9] which cannot compute these values, our
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Fig. 6. (a) Minima in the quadratic error function by computable parameters. (b) Absence of a minima by undefined intrinsic parameter.

Table 2
Intrinsic parameters by rotation about the y-axis, and transla-
tion along the three axes by increasing noise

Noise kit kis ko ka3 Error

0 500 256 500 256 10°8

0.1 505 259 509 261 0.001440
0.5 504 259.5 503.5 258 0.004897
0.75 498 254 503.5 258 0.001668
1 482 242 485 254 0.011517
1.25 473 220 440 238 0.031206
1.5 517 272 518 266 0.015
2.0 508 262.5 504 258.5 0.006114
2.5 515 268 501.9 257 0.011393
3 510 265 524 276 0.011440
Table 3

Intrinsic parameters by rotation about the three axes, and trans-
lation along the three axes by increasing noise

Noise kit kis ko ka3 Error

0 500 256 500 256 10°8

0.1 500 255.5 501 258 0.000659
0.5 498 254 499 255 0.001031
0.75 496 252 505 261 0.004013
1 508 263 508.5 266 0.004656
1.25 494 250 514 272 0.010244
1.5 502 255 488 240 0.007613
2.0 524 276 487 242 0.017349
2.5 490 252 540 334 0.025362
3 502 258 522 284 0.013075

method can anyway compute the intrinsic parameters.
For the second experiment, the camera was firstly rotated
about the three axes and it had a small translation along
the three axes. The results are presented in Table 3. The

(b)

Fig. 7. Scenario.

accuracy of Tables 2 and 3 is tight related with that of the
point correspondence. In Ref. [9], similar experiments
are presented and comparing with our results, we can
conclude that the procedures using the Kruppa’s equa-
tions are slightly more noise sensitive as the Pascal’s-
theorem-based method. Note that our experiments pres-
ents computations with noise varying in a range beyond
1 pixel and show that the error is below 0.0254. As
opposed to Ref. [9], our method has proved that for
a range more than 1 pixel it has a steady behavior and
always is able to compute the intrinsic parameters.

7.2. Experiments with real images

In this section, we present experiments using real im-
ages with one general camera motion (see Fig. 7). The
motion was done about the three coordinate axes. We
use a calibration dice and for comparison purposes we
compute the intrinsic parameters from the involved pro-
jective matrices by splitting the intrinsic parameters from
the extrinsic parameters. These reference values were:
first camera k;; = 1200.66, k,, = 1154.77, k3 = 424.49,
ko3 =264.389 and second camera ky; = 1187.82,
ko, = 1141.58, k3 = 386.797, k,3 = 288.492 with mean
errors of 0.688 and 0.494, respectively. Thereafter using
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Fig. 8. Minima for ky; and k5 in their quadratic error function.

Fig. 9. Superimposed epipolar lines using the reference and the
Pascal’s method.

the gained [R, |t;] and [R, |t,] we compute the [R]|t]
between cameras which is required for the Pascal’s-the-
orem-based method. The fundamental matrices were
computed using a non-linear method. Using the Pas-
cal’s-theorem-based method, we compute the following
intrinsic parameters ky; = 1244, k,, = 1167, k{3 = 462
and k,3 =217, see the minimum values in Fig. 8.
These values resemble quite well to the reference ones
and cause an error of \/leqnllz + -+ |egng|*:
0.00496045 in the error function. This square error is
computed using the eight equations computed from the
o’s of the first and second cameras. The difference with
the reference values is attributable to inherent noise in
the computation and to the fact that the reference values
are also not exact.

In order to visualize how good we gain the epipolar
geometry, we superimposed the epipolar lines for
some points using the reference method and the
Pascal’s method. In both, we computed the fundamental
matrix in terms of their intrinsic parameters, i.e.,

F =K "[t],RK ' Fig. 9 shows this comparison.
It is clear that both methods give quite similar epipolar
lines and interesting enough as the figure shows,
the intersecting point or epipole coincides almost
exact.

8. Conclusions

This paper presents a geometric approach to compute
the camera intrinsic parameters in the geometric algebra
framework using the Pascal’s theorem. We adopted the
projected characteristics of the absolute conic in terms of
the Pascal’s theorem to propose an entirely new camera
calibration method based on purely geometric thoughts.
The use of this theorem in the geometric algebra frame-
work allows us the computing of a projective invariant
using the conics of only two images. Then, this projective
invariant expressed in terms of brackets helps us to set
enough equations to solve the calibration problem. Our
method requires to know the point correspondences, the
camera translation direction and a known rotation about
only one axis, not the complete essential matrix. The
method throws new light for the understanding of the
problem owing to the application of the Pascal’s theorem
and it also explains the over-seen role of the projective
invariant in terms of the brackets. Using synthetic and
real images, we show that the method performs efficiently
without any initialization or getting trapped in local
minima.
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