
Texture driven pose estimation

Bodo Rosenhahn, Harvey Ho and Reinhard Klette
Center for Imaging Technology and Robotics (CITR)

The University of Auckland
New Zealand

bros028@cs.auckland.ac.nz

Abstract

This article presents a 2D-3D pose estimation algorithm
which relies on texture information on the surface mesh of
an object model. The textured surface mesh is rendered in
a virtual image and a modified block matching algorithm is
applied to determine correspondences between midpoints
of surface patches to points in an image. This is used in a
point-based 2D-3D pose estimation algorithm to determine
the pose and orientation of a 3D object with respect to given
image data. We present experiments on various image se-
quences and show advantages of the chosen approach (e.g.,
in the context of varying backgrounds, noise or partial oc-
clusions).

1 Introduction

Pose estimation has been studied in computer vision
since its beginnings. It is crucial for many computer and
robot vision tasks. This article addresses the2D-3D pose
estimation problem[2] which is defined as follows: We as-
sume an image of an object taken by a calibrated camera
as 2D sensory data, and we assume a 3D representation of
an object model. With 2D-3D pose estimation we calcu-
late a rigid motion (i.e., containing both 3D rotation and
3D translation) which fits a particular object model with
the image data. The basic scenario is visualized in Fig-
ure 1. A crucial question for pose estimation is the form
of object representation. The literature deals with point and
line based representations, kinematic chains, higher order
curves or surfaces, up to free-form contours or free-form
surfaces; see [1, 9] for overviews. Previous works [10] fol-
lowed a silhouette-based approach for pose estimation of
free-form surface models. Figure 2 shows examples of im-
ages. There, just the rim contour in an image is used as

R , t

o

Figure 1. Basic sketch of the 2D-3D pose es-
timation problem: The task is to find a rigid
body motion, defined by a rotation R and
translation t, which leads to a best fit be-
tween observed 2D image data and a prede-
fined 3D object model.

feature for pose estimation, and all internal structure infor-
mation is ignored. In this contribution we want to introduce
a pose estimation algorithm which relies on texture infor-
mation of rendered objects. The reason is that using texture
information eliminates image pre-processing (e.g., corner
extraction or silhouette estimation), since no preprocessing
will be needed at all. Instead we will work on the image
itself. Furthermore, it allows for the use of as much im-
age information as there is visible, in contrast to silhouette
based pose estimation, which relies on the object rim. The
price to be paid is a more complex object representation,

1



Figure 2. Examples of images taken for a
silhouette-based approach for pose estima-
tion.

which not only requires a free-form surface mesh, but also
textures and texture coordinates on the mesh. Figure 3 visu-
alizes the basic idea: we assume the representation of a 3D
object model as surface mesh and assume a texture mapped
onto the object (upper right). We further observe the rep-
resented object in an image of a calibrated camera (upper
left). Now the idea is to render the object with the projec-
tion matrix into a virtual image and to perform a 2D block
matching between the virtually projected object and the ob-
served object (lower right). This leads to a set of 2D-2D
correspondences by using the midpoints of surface patches.
Since we can further determine the midpoint of a 3D sur-
face patch to its projected 2D surface patch, this leads to a
set of 2D-3D point correspondences. We use this set of cor-
respondences in a point-based pose estimation algorithm to
determine the pose of the object model with respect to the
image data. We call this procedure2D-3D texture-based
pose estimation. A pose result (shown in the lower left im-
age of Figure 3) is stated by overlaying the corners of the
3D surface mesh with the input image. The basic principle
can be compared with a least-square correlation technique,
widely used for image matching by estimating their closest
similarity [3, 4]. Different 2D shapes such as squares or el-
lipses are common; instead here we work with perspectively
projected surface patches as adaptive 2D shapes. Even 3D
shape knowledge can be incorporated [5]. But instead of
minimizing within a space of image signals by combining
the optic flow constraint with a linearized rigid motion, we
propose to estimate a local flow-field and apply a feature-
based pose estimation algorithm separately. This allows for
a faster (real-time) algorithm and local errors (due to noise
or occlusion) can be handled more easily.

Figure 3. Illustration of texture-based pose
estimation.

We continue in Section two with an introduction to block
matching and pose estimation. In Section three we intro-
duce the 2D-3D block matching based pose estimation al-
gorithm and explain the algorithmic steps in detail. Section
four continues with first experiments of this approach and
Section five concludes with a brief discussion.

2 Foundations

2.1 Block matching

Block matching (BM) is employed to measure similari-
ties between two images, or portions of images, on a pixel-
by-pixel basis [12]. It is widely used in visual tracking,
stereo vision and video compression applications. To com-
pare two blocks (a block is a subarea of an image), two
common criteria are the sum of square difference (SSD) and
the sum of absolute difference (SAD). Although adopted
for various computer vision tasks, block matching in 2D
space has some weaknesses (e.g., in its inaccuracy in 3D
rotation estimation): the block motion vector is computed
relatively precisely for a translational movement, but if an
object rotates in 3D, its blocks should be deformed with a
perspective transformation to match the scene. But no 3D
information is entirely embedded in 2D-2D block match-
ing, since only rectangularly shaped blocks are commonly
used. This leads to inaccuracies and therefore unsatisfac-
tory matching results. One aspect of this contribution is to
couple 3D model information with block matching to han-
dle scenes with rotations, as well as partially or fully oc-
cluded surface patches.

Searching for a block inside of a search window fol-
lows some search patterns, which can be classified into two

2



categories, Full Search and Step Search (e.g., Three-Step
Search, Four-Step Search or New Three Step Search). We
implemented Full Search, Three-Step search and Four-Step
Search. As the block matching accuracy is the primary re-
quirement, we use Full Search as the main approach. It still
leads to a fast algorithm, and we can process the images in
5-151 frames per second on a standard Linux PC. We use
block matching to compare texture mapped patches on a
surface model with 2D image data.

2.2 Pose estimation

We assume a set of point correspondences(Xi, xi), with
4D (homogeneous) model pointsXi and 3D (homoge-
neous) image pointsxi. Each image point is reconstructed
to a Plücker lineLi = (ni, mi), with a (unit) directionni,
and momentmi [6]. The 3D rigid motion is represented as
exponential form

M = exp(θξ̂) = exp

„

ω̂ v

03×1 0

«

(1)

where θξ̂ is the matrix representation of a twistξ =
(ω1, ω2, ω3, v1, v2, v3) ∈ se(3) = {(v, ω)|v ∈ R

3, ω ∈
so(3)}. A twist contains six parameters and can be scaled
to θξ with a unit vectorω. To reconstruct a group action
M ∈ SE(3) from a given twist, the exponential function
exp(θξ̂) = M ∈ SE(3) can be used. The parameterθ ∈ R

corresponds to the motion velocity (i.e., the rotation veloc-
ity and pitch). For varyingθ, the motion can be identified as
screw motion around an axis in space. This is also proven
by Chasles’ Theorem [6] from 1830. Indeed, evaluating the
exponential of a matrix is non-trivial, but it can be calcu-
lated efficiently by using the Rodriguez formula [6],

exp(ξ̂θ) =

„

exp(θω̂) (I − exp(ω̂θ))(ω × v) + ωωT vθ

01×3 1

«

with exp(θω̂) computed by calculating

exp(θω̂) = I + ω̂ sin(θ) + ω̂
2(1 − cos(θ)). (2)

Note that only sine and cosine functions of real numbers
need to be computed.

For pose estimation we combine the reconstructed
Plücker lines with the screw representation for rigid mo-
tions and apply a gradient descent method: Incidence of the
transformed 3D pointXi with the 3D rayLi can be ex-
pressed as

(exp(θξ̂)Xi)3×1 × ni − mi = 0. (3)

Indeed,x is a homogeneous 4D vector, and after multipli-
cation with the4 × 4 matrix exp(θξ̂) we neglect the ho-
mogeneous component (which is1) to evaluate the cross
product with n. Note, that this constraint equation ex-
presses the perpendicular error vector between the Plücker

1Depending on the mesh resolution.

line and the 3D point. The aim is to minimize this spa-
tial error. Therefore we linearize the equation by using

exp(θξ̂) =
∑

∞

k=0
(θξ̂)k

k! ≈ I +θξ̂, with I as identity matrix.
This results in

((I + θξ̂)x)3×1 × n − m = 0, (4)

and can be reordered into an equation of the formAξ = b.
Collecting a set of such equations (each is of rank two) leads
to an overdetermined system of equations, which can be
solved using, for example, the Householder algorithm. The
Rodriguez formula can be applied to reconstruct the group
actionM from the estimated twistξ. Then, the 3D points
can be transformed and the process is iterated until the gra-
dient descent approach converges. In recent years, this
technique has been extended to higher order curves, free-
form contours and free-form surfaces, see [9, 10]. There,
a silhouette-based method for pose estimation of free-form
surface models is proposed.

3 2D-3D Block matching

We assume an object model, given as a surface mesh
added with texture information. Furthermore, we assume an
image of the visible object and a projection matrix, which
relates the surface mesh to the camera. The projection ma-
trix with respect to the image data should give us a tracking
assumption, else the search space for block matching will
be too large (e.g., in this case up to 10 pixels). Then the
algorithm starts with rendering the object model in a vir-
tual image by using the given projection matrix. After this
we perform a 2D block matching from the rendered object
model to the image data. Note that background is automat-
ically eliminated, since we perform block matching from
the virtual image to the given image, and not vice versa.
Furthermore, we do not work with rectangular shaped 2D
blocks, but with deformed search windows along the sur-
face mesh. This is shown in Figure 4. To model a per-

Figure 4. Left: A deformed block mask. Right:
Illustration of the well-known aperture prob-
lem.

spective block, we use a rectangular box with a block-mask

3



obtained through the Ray-Crossing algorithm (e.g., intro-
duced in [7]). Therefore we use the bounding box of each
search pattern, where height and width are calculated for
each patch at each frame. Then the Ray-Crossing algorithm
is applied to check whether a point is inside or outside the
bounding box. If a point is inside the deformed block, its
corresponding flag is set to1, else to0. When comparing
the deformed block from one frame to the next frame, the
mask is tested for each point on the block. If the flag is
1, a comparison is performed, else not. Note that we ap-
ply a standard 2D-2D block matching algorithm and only
use an additional filter mask to obtain a deformed block.
After the block matching, we determine from the 2D-2D
correspondences the 2D-3D correspondences. This set of
correspondences is used in our point-based pose estimation
procedure, and we can use the estimated rigid body motion
to update the projection matrix for the next frame.

When the box moves, its six faces can become visible or
invisible dynamically. In other words, if a face is present
in the first frame, it might be occluded in the second frame.
Consequently, the number of correspondences is changing
dynamically. Optic flow estimation procedures are often

Figure 5. Block matching result from the vir-
tual image to the real image. The aperture
problem influences results.

sensitive to the aperture problem (visualized on the right
in Figure 4): using only local search windows allows us to
estimate the normal flow along a gradient (shown as dashed
arrows), instead of the real flow. This also happens here
during block matching, see Figure 5. But since all infor-
mation is used at once for pose estimation, the normal flows
contribute to the real object motion. This leads to stable and
smooth pose results, although the local flow field is noisy.

A problem during the comparison between the texture
mapped object model and the image are the changing light-
ing conditions which result in a need for color calibration,
or on-line texture updating. We use a process of texture
updating, which also allows reflections on an object to be
handled. To achieve an on-line texture updating, we use the
pose result of the last processed image frame and take the
last frame for new texture coordinates on the object model.
Matching in the image domain is not even stable with a

Figure 6. Translation along the x-axis.

static scene, since an error propagation at the object bound-
aries can occur during mapping the textures next to the ob-
ject on the object grid. To avoid this problem, we use a
hybrid method and perform texture updates just for the in-
ner surface patches, whereas the boundary patches remain
unchanged. This hybrid approach proves to be much more
stable than using constant textures.

4 Experiments

We start our experiments with a simple scene. As an
object model we use a box with six textured faces. The box
has the height, width and depth of405×280×255mm. We
calibrate the scene using Tsai-calibration [11]. The camera
has a distance of approximately2m to the object and takes
images of resolution384 × 288 pixels. We implemented in
C,C++ and use OpenGL for rendering and visualization.

A result of a first sequence, dealing with a translational
movement of the object, is shown in Figure 6: at the be-
ginning the object is not moving over 40 frames. Then the
object is moved along thex-axis of the world coordinate
system for160mm (till frame 120), and then it remains con-
stant till frame 160. The images above the diagram show a
few examples of the sequence. Though the object is moved
manually, the motion pattern is clearly visible in the dia-
gram. Assuming that we perform an ideal motion, the er-
ror varies around2mm in space. The two diagrams show
results using constant textures (before optimization) andus-
ing dynamic texture updating (after optimization). It shows,
that the results are stabilized.

Figure 7 shows examples from a rotation sequence. The
algorithm can automatically decide which patches are cur-

4



Figure 7. Rotation of the box model: Due to
rotation, patches can become visible or oc-
cluded, leading to a dynamic number of cor-
respondences.

rently visible or (self-)occluded and determine the number
of used correspondences dynamically.

Figure 8 shows examples of changing backgrounds dur-
ing pose estimation. Since 2D-3D block matching is al-
ways performed from the virtual image to the real image
(and not vice versa) changing backgrounds do not influence
the block matching results. Shadows are only effects on the
objects which disturb the matching result. For occlusion
handling, those correspondences of surface patches whose
matching errors are too big are rejected during pose esti-
mation: Figure 9 shows the stability of our approach with
respect to artificially disturbed image data: for a sequence
with a non-moving object we add a blue stripe over each
frame and move it from the left to the right in the image.
We further estimate the pose of the object during the se-
quence. The images on top show a few examples for a blue

Figure 8. Pose results for changing back-
grounds.

stripe leading to70% occlusion. The diagram shows the
frame number at thex-axes and the value of the estimatedy-
coordinate (in mm) at they-axes during the sequence. The
different curves show they-coordinates for different stripe
widths leading to0%-70% occlusion of the object. Since
the object is not moving in the sequence, the ground truth is
a zero function, which is nearly given by the values for no
occlusion. The more occlusion occurs, the more noisy are
the results, but as can be seen, we are able to track an ob-
ject successfully even with70% occlusion. Figure 10 shows
pose results from a second occlusion experiment: A person
is moving the arms in front of a camera, while the object is
moving along thex-axis.

Figure 11 shows the stability of the algorithm with re-
spect to noisy image data. Therefore, we use the first se-
quence and add Gaussian noise to each pixel. Then the pose
is estimated. The diagram shows the translation along the
x-axis during the sequence for different noise levels. The
image in the upper right corner visualizes the noise level of
0.6 which still allows us to track the object.

Another extension is to turn from a monocular approach
to a stereo approach. This requires a block matching for
each image separately. Then the sets of equations for both
cameras are combined into one system of equations and
solved simultaneously. The setup is shown in Figure 12 and
a pose result of a cylinder model is shown in Figure 13.

5 Discussion

In this paper we present an approach for pose estima-
tion of object models with textured surfaces. For this we
fuse a point-based pose estimation algorithm with a per-
spective block-matching algorithm, which allows to match

5



Figure 9. Different occlusions during an im-
age sequence containing a static object.

projected surface patches with image data. Several interest-
ing properties and aspects can be summarized: Firstly, the
fusion of a local (block) matching approach with a (global)
pose estimation procedure allows to deal with the aperture
problem. Though the motion field is not very accurate, the
pose is stable since all available information is used simul-
taneously for pose estimation. Secondly, the approach uses
all available information at once and can deal dynamically
with changing views and faces which become visible and
occluded during different frames. Thirdly, no extra image
processing is required, such as silhouette extraction. To
achieve this, a more complex model (with texture informa-
tion) is required. To deal with changing lighting conditions,
a remapping is performed during tracking by using the re-
sult of the previous frame. This turns out to be fast and
stable. Fourthly, the approach is independent from chang-
ing backgrounds and can deal with partial occlusions during
pose estimation by detecting and eliminating outliers. The
whole algorithm can be seen as a successful interaction of
computer graphics capabilities within a computer vision ap-
plication. Though computer vision and computer graphics
are often treated as two different disciplines, the interaction
of both disciplines can be advantageous, as shown here.
Acknowledgments
This work has been supported by the DFG projects RO

Figure 10. Pose results during occlusions

Figure 11. Artificial noise during pose estima-
tion. The left image has a random noise fac-
tor of 0.2 and the right one of 0.6.

2497/1-1 and RO 2497/1-2.

References

[1] Goddard J.S. Pose and Motion Estimation From Vision
Using Dual Quaternion-Based Extended Kalman Filtering.
University of Tennessee, Knoxville, Ph.D. Thesis, 1997.

[2] Grimson W. E. L. Object Recognition by Computer. The
MIT Press, Cambridge, Massachusetts, 1990.

[3] Gruen A and Baltsavias E. Adaptive least squares correlation
with geometrical constraints. Proceedings ofSPIE(The so-
ciety of photo-Optical Instrumentation Engineers), Vol. 595,
pp. 72-82, 1985.

[4] Foerstner W. On feature based correspondence algorithm
for image segmentation and least squares matching.Int.

6



Figure 12. The stereo setup.

Figure 13. Pose results of a cylinder.

Archives of Photogrammetry and Remote Sensing, Vol 26,
P3, Rovaniemi, pp. 150-166, 1986.

[5] Koch R. Dynamic 3D scene analysis through synthesis feed-
back control. IEEE Pattern Analysis and Machine Intelli-
gence, Special issue on analysis and synthesis. Vol 15, No 6,
pp. 556-568, June 1993.

[6] Murray R.M., Li Z. and Sastry S.S.A Mathematical Intro-
duction to Robotic Manipulation.CRC Press, Inc. Boca Ra-
ton, FL, USA, 1994.

[7] ORourke J.Computational Geometry in C. Cambridge Uni-
versity Press, Cambridge, UK, 1998.

[8] Rosenhahn B., Perwass C. and Sommer G. Pose estima-
tion of free-form surface models. InPattern Recognition,
25th DAGM Symposium, B. Michaelis and G. Krell (Eds.),
Springer-Verlag, Berling Heidelberg, LNCS 2781, pp. 574-
581, 2003.

[9] Rosenhahn B. Pose Estimation Revisited.Technical Re-
port 0308, Christian-Albrechts-Universität zu Kiel, Institut
für Informatik und Praktische Mathematik, 2003. Available
athttp://www.ks.informatik.uni-kiel.de

[10] Rosenhahn B. and Sommer G. Pose Estimation of Free-form
Objects.Proceedings of the European Conference on Com-
puter Vision, ECCV ’04, Part I, T. Pajdla and J. Matas (Eds.),
Springer-Verlag, Berling Heidelberg, LNCS 3021, pp. 414-
427, Prague, 2004.

[11] Tsai R. A Versatile Camera Calibration Technique for
High-Accuracy 3D Machine Vision Metrology Using
Off-the-Shelf TV Cameras and Lenses. 1986. E.g. Available
athttp://www-2.cs.cmu.edu/afs/
cs.cmu.edu/user/rgw/www/TsaiCode.html.
Last accessed at 6.4.2004.

[12] Shi Y. and Sun H.Image and Video Compression for Mul-
timedia Engineering: Fundamentals, Algorithms, and Stan-
dards.CRC Press, Boca Raton, FL, USA, 1999.

[13] Sommer G., (ed.),Geometric Computing with Clifford Alge-
bra. Springer, Berlin, 2001.

[14] Tarel J.-P., Civi H. and Cooper D.B. Pose estimation of
free-form 3D objects without point matching using algebraic
surface models. InIEEE Workshop Model Based 3D Im-
age Analysis, IEEE CS Press, Los Alamitos, CA, pp. 13-21,
1998.

7


