Silhouette Based Human Motion Estimation
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Abstract. In this contribution we present an algorithm for 2D-3D pose
estimation of human beings. A human torso is modeled in terms of free-
form surface patches which are extended with joints inside the surface.
We determine the 3D pose and the angles of the arm joints from image
silhouettes of the torso. This silhouette based approach towards human
motion estimation is illustrated by experimental results for monocular
or stereo image sequences.

1 Introduction

Modeling and tracking of human motion from video sequences is an increasingly
important field of research with applications in sports sciences, medicine, anima-
tion (avatars) or surveillance. E. Muybridge is known as the pioneer in human
motion capturing with his famous experiments in 1887 called Animal Locomo-
tion. In recent years, many techniques for human motion tracking have been
proposed which are fairly effective [2, 5], but they often use simplified models of
the human body by applying ellipsoidal, cylindrical or skeleton models and do
not use a realistic surface model. The reader is referred to [4] for a recent survey
on marker-less human motion tracking.

In this work we present and discuss a human motion capturing system which
estimates the pose and angle configuration of a human body captured in image
sequences. Contrary to other works we apply a 2-parametric surface representa-
tion [3], allow full perspective camera models, and use the extracted silhouette
of the body as the only image information. Qur algorithms are fast (400ms per
frame), and we present experiments on monocular and stereo image sequences.
The scenario is visualized in the left of figure 1. As it can be seen, we use a
model of the human torso with its arms, and model it by using two free-form
surface patches. The first patch (modeling the torso) contains 57 x 21 nodes and
the second (modeling the arms) contains 81 x 21 nodes. Each arm contains 4
joints, so that we have to deal with 8 joint angles and 6 unknowns for the rigid
motion resulting in 14 unknowns. The right of figure 1 gives the names of the
used joints for the diagrams in the experiments.
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Fig. 1. Left: The pose scenario: the aim is to estimate the pose R, t and the joint
angles ¢;. Right: The names of the used joints.

This contribution continues work reported in [7, 8] on point-based, contour-
and surface-based pose estimation. But whereas in these works only rigid objects
are discussed or only a point-based representation scheme for modeling kinematic
chains is used, in this work we want to overcome these previous limitations by
introducing an approach for pose estimation of free-form surfaces, coupled with
kinematic chains. It is applied to marker-less human motion tracking. We start
with recalling foundations and introduce twists which are used to model rigid
motions and joints. Then we continue with free-form contours and surfaces,
and define a basic approach for pose estimation, followed by extensions and
experiments. We conclude with a brief discussion.

2 Foundations

Clifford or geometric algebras [9] can be used to deal with geometric aspects
of the pose problem. We only list a few properties which are important for our
studies. The elements in geometric algebras are called multivectors which can be
multiplied by using a geometric product. It allows a coordinate-free and dense
symbolic representation. For modeling the pose problem, we use the conformal
geometric algebra (CGA). The CGA is build up on a conformal model which
is coupled with a homogeneous model to deal with kinematics and projective
geometry simultaneously. In conclusion, we deal with the Euclidean, kinematic
and projective space in a uniform framework and can therefore cope with the
pose problem in an efficient manner. In the equations we will use the inner
product, -, the outer product, A, the commutator, X, and anticommutator, X,
product, which can be derived from the geometric product. Though we will also
present equations formulated in conformal geometric algebra, we only explain
these symbolically and want to refer to [7] for more detailed information.



2.1 Point based pose estimation

For 2D-3D point based pose estimation we use constraint equations which com-
pare 2D image points with 3D object points. Assume an image point & and the
optical center O. These define a 3D projection ray, L, = e A (O Ax), as Pliicker
line [6]. The motor M is defined as exponential of a twist ¥, M = exp(—gsp),
and formalizes the unknown rigid motion as a screw motion [6]. The motor M is
applied on an object point X as versor product, X' = M XM, where M rep-
resents the so-called reverse of M. Then the rigidly transformed object point,
X', is compared with the reconstructed line, L_, by minimizing the error vector
between the point and the line. This specifies a constraint equation in geometric
algebra:

(MXDM) x (e A(OAxm)) =0.

Note, that we deal with a 3D formalization of the pose problem. The constraint
equations can be solved by linearization (i.e. solving the equations for the twist-
parameters which generate the screw motion) and by applying the Rodrigues
formula for a reconstruction of the group action [6]. Iteration leads to a gradient
descent method in 3D space. This is presented in [7] in more detail, where similar
equations have been introduced to compare 3D points with 2D lines (3D planes)
and 3D lines with 2D lines (3D planes). Pose estimation can be performed in
real-time and we need 2ms on a Linux 2GHz machine to estimate a pose based
on 100 point correspondences.

Joints along the kinematic chain can be modeled as special screws with no
pitch. In [7] we have shown, that the twist then corresponds to a scaled Pliicker
line, ¥ = 6L in 3D space, which gives the location of the general rotation.
Because of this relation it is simple to move joints in space and they can be
transformed by a motor M in a similar way such as plain points, ¥' = M¥ M.

2.2 Contour-based pose estimation

We now model free-form contours and their embedding into the pose problem.
As it turned out, Fourier descriptors are very useful, since they are a special
case of so-called twist-generated curves which we used to model cycloidal curves
(cardioids, nephroids and so forth) within the pose problem [7]. The later intro-
duced pose estimation algorithm for surface models goes back onto a contour
based method. Therefore, a brief recapitulation of our former works on con-
tour based pose estimation is of importance. The main idea is to interpret a
1-parametric 3D closed curve as three separate 1D signals which represent the
projections of the curve along the z, y and z axis, respectively. Since the curve
is assumed to be closed, the signals are periodic and can be analyzed by ap-
plying a 1D discrete Fourier transform (1D-DFT). The inverse discrete Fourier
transform (1D-IDFT) enables us to reconstruct low-pass approximations of each
signal. Subject to the sampling theorem, this leads to the representation of the
1-parametric 3D curve C(¢) as
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The parameter m represents each dimension and the vectors pj* are phase vec-
tors obtained from the 1D-DFT acting on dimension m. In this equation we
have replaced the imaginary unit i = v/—1 by three different rotation planes,
represented by the bivectors I;, with 1;> = —1. Using only a low-index sub-
set of the Fourier coefficients results in a low-pass approximation of the object
model which can be used to regularize the pose estimation algorithm. For pose
estimation this model is then combined with a version of an ICP-algorithm [10].

2.3 Silhouette-based pose estimation of free-form surfaces

To model surfaces, we assume a two-parametric surface [3] of the form

F(¢1,¢2) Zf (¢1, ¢2)es,

with three 2D functions fi(¢y, ¢2) : R> = R acting on the different Euclidean
base vectors e; (i = 1,...,3). The idea behind a two-parametric surface is to
assume two independent parameters ¢; and ¢, to sample a 2D surface in 3D
space. For a discrete number of sampled points, fi ., (n1 € [-Ny, Ni];ny €
[-N2, N3]; Ni,No € N, i = 1,...,3) on the surface, we can now interpolate
the surface by using a 2D discrete Fourier transform (2D-DFT) and then apply
an inverse 2D discrete Fourier transform (2D-IDFT) for each base vector sepa-
rately. Subject to the sampling theorem, the surface can be written as a Fourier

representation,

27Tk1¢1 . 21!']62¢)2
Fonen =3 3 3 s op (et ) o (S22 1),

i=1 k1=—N1 kg=—Ng

The complex Fourier coefficients are contained in the vectors p}, ,, that lie in
the plane spanned by l;. We will again call them phase vectors. These vectors
can be obtained by a 2D-DFT of the sample points fm,n2 on the surface. We
now continue with the algorithm for silhouette-based pose estimation of surface
models.

Surface based pose estimation
Reconstruct projection rays from image points

(Project the low-pass object model in the virtual image

/ Estimate the 3D silhouette

' Apply contour based pose estimation algorithm

: Estimate the nearest point on the 3D contour to each ray
| E‘){ Use correspondence set to estimate the contour pose

= Transform the contour model

. Transform the surface model ~ i 4
Increase low-pass approximation of the surface model h | -

Fig. 2. Left: The algorithm for pose estimation of surface models. Right: A few example
images of a tracked car model on a turn-table.



We assume a properly extracted silhouette (i.e., in a frame of the sequence)
of our object (i.e., the human body). To compare points on the image silhouette
we consider rim points on the surface model (i.e., which are on an occluding
boundary of the object). This means we work with the 3D silhouette of the
surface model with respect to the camera. To obtain this, we project the 3D
surface on a virtual image. Then the contour is calculated and from the image
contour the 3D silhouette of the surface model is reconstructed. The contour
model is then applied within the contour-based pose estimation algorithm. Since
aspects of the surface model are changing during ICP-cycles, a new silhouette
will be estimated after each cycle to deal with occlusions within the surface
model. The algorithm for pose estimation of surface models is summarized in
figure 2 and it is discussed in [8] in more detail.

3 Human Motion Estimation

We now introduce how to couple kinematic chains within the surface model
and present a pose estimation algorithm which estimates the pose and angle
configurations simultaneously.

Tracking assumption Correspondence estimation Pose estimation

Iteration

Fig. 3. The basic algorithm: Iterative correspondence and pose estimation.

A surface is given in terms of three 2-parametric functions with respect to
the parameters ¢; and ¢». Furthermore, we assume a set of joints J;. By using
an extra function J(¢1, ¢2) — [Ji|J; : ith. joint], we are able to give every node
a joint list along the kinematic chain. Note, that we use [,] and not {, }, since the
joints are given ordered along the kinematic chain. Since the arms contain two
kinematic chains (for the left and right arm separately), we introduce a further
index to separate the joints on the left arm from the ones on the right arm. The
joints themselves are represented as objects in an extra field (a look-up table)
and their parameters can be accessed immediately from the joint index numbers.
Furthermore, it is possible to transform the location of the joints in space (as
clarified in section 2). For pose estimation of a point X, ; attached to the nth
joint, we generate constraint equations of the form

(M(M;...M,X, , M,...M)M) x eA(OAn;,) =0.

To solve a set of such constraint equations we linearize the motor M with respect
to the unknown twist ¥ and the motors M ; with respect to the unknown angles
0;. The twists ¥; are known a priori.
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Fig. 4. Left: First pose results with a 6 DOF kinematic chain. Right: Angles of the left
and right arm during the tracked image sequence.

The basic pose estimation algorithm is visualized in figure 3: We start with
simple image processing steps to gain the silhouette information of the person
by using a color threshold and a Laplace operator. Then we project the surface
mesh in a virtual image and estimate its 3D contour. Each point on the 3D
contour carries a given joint index. Then we estimate the correspondences by
using an ICP-algorithm, generate the system of equations, solve them, transform
the object and its joints and iterate this procedure. During iteration we start
with a low-pass object representation and refine it by using higher frequencies.
This helps to avoid local minima during iteration.

First results of the algorithm are shown on the left of figure 4: The figure
contains two pose results; it shows on each quadrant the original image and
overlaid the projected 3D pose. The other two images show the estimated joint
angles in a virtual environment to visualize the error between the ground truth
and the estimated pose. The tracked image sequence contains 200 images. In
this sequence we use just three joints on each arm and neglect the shoulder
(back) joint. The right diagram of figure 4 shows the estimated angles of the
joints during the image sequence. The angles can easily be identified with the
sequence. Since the movement of the body is continuous, the estimated curves
are also relatively smooth.

Then we extend the model to a 8DOF kinematic chain and add a joint on
the shoulder which allows the arms to move backwards and forwards. Results
of the same sequence are shown in figure 5. As it can be seen, the observation
of the pose overlaid with the image data appear to be good, but in a simu-
lation environment it can be seen, that estimated joints are quite noisy. The
reason for the depth sensitivity lies in the used image information: Figure 6
shows two images of a human with different arm positions. It can be seen, that



Fig. 6. The silhouette for different arm poses of the kinematic chain.

the estimated silhouettes look quite similar. This means, that the used image
features are under-determined in their interpretation as 3D pose configuration.
This problem can not be solved in an algorithmic way and is of geometric nature.
To overcome this problem we decided to continue with a stereo setup. The basic

Fig. 7. Example images of a first stereo experiment.

idea is, that the geometric non-uniquenesses can be avoided by using several
cameras observing the scene from different perspectives. Since we reconstruct
rays from image points, we have to calibrate the cameras with respect to one
fixed world coordinate system. Then it is unimportant for which camera a ray is
reconstructed and we are able to combine the equations from both cameras into
one system of equations and estimate the pose and arm angles simultaneously.



Figure 7 shows example images of our stereo implementation. In each segment,
the left images show the original and filtered image of each camera. The middle
images show pose results in both cameras and the right images show the pose
results in a virtual environment. It can be seen that the results improved.

4 Discussion

This contribution presents an approach for silhouette-based pose estimation of
free-form surfaces coupled with kinematic chains. We use our previous work,
dealing with 2D-3D pose estimation of points, free-form contours and free-form
surfaces and describe how to extend the approach to kinematic chains. In the
experiments it turns out that pure silhouette information is not sufficient for
accurate pose estimation since the extracted silhouette and its interpretation as
3D pose is under-determined. Therefore, we move on to a multi-view scenario
and illustrate that the pose results can be improved remarkably in a stereo setup.
Experiments have been done with image sequences between 100 and 500 frames.
Further work will continue with an extension of the multi-camera set-up.
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