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Abstract. In this article we discuss the 2D-3D pose estimation problem
of 3D free-form surface models. In our scenario we observe free-form sur-
face models in an image of a calibrated camera. Pose estimation means
to estimate the relative position and orientation of the 3D object to
the reference camera system. The object itself is modelled as a two-
parametric surface model which is represented by Fourier descriptors.
It enables a low-pass description of the surface model, which is advan-
tageously applied to the pose problem. To achieve the combination of
such a signal-based model within the geometry of the pose scenario, the
conformal geometric algebra is used and applied.

1 Introduction

Pose estimation itself is one of the oldest computer vision problems. It is crucial
for many computer and robot vision tasks. The problem is finding a rigid motion,
which fits object models with image data. One main question is, how to represent
objects, and the wide variety of literature deals with different entities concerning
simple point or line correspondences up to general free-form contours. Pioneer-
ing work was done in the 80’s and 90’s by Lowe [7], Grimson [6] and others.
These authors use point correspondences. More abstract entities can be found
in [17, 2]. In the literature we find circles, cylinders, kinematic chains or other
multi-part curved objects as entities. Works concerning free-form curves can be
found in [4, 15]. Contour point sets, affine snakes, or active contours are used for
visual servoing in these works. A free-form surface model can be represented for
example as parametric form, implicit surface, superquadric, etc. An overview of
free-form representations can e.g. be found in [3], though the focus of this work
is on object recognition and not on pose estimation.

Pose estimation means to estimate the relative position and orientation of
a 3D object to a reference camera system: We assume a 3D object model and
the extracted silhouette of the object in an image of a calibrated camera. The
aim is to find the rotation R and translation t of the object, which leads to
the best fit of the reference model with the extracted silhouette. To relate 2D
image information to 3D entities we interpret a point on the 2D silhouette as a
projection ray in space, gained through projective reconstruction from the image
point. This idea will be used to formulate the pose estimation problem in a 3D



scenario. Our recent work concentrates on modeling objects by using features of
the object [12] (e.g. corners, edges, kinematic chains) and on modeling objects
by using free-form contour models [11]. Instead, we now deal with 3D free-form
surface models of objects. This is the next step of generalization of our existing
algorithms and leads to the possibility of modeling more natural objects.

2 The pose problem in conformal geometric algebra

This section concerns the formalization of the free-form pose estimation problem
in conformal geometric algebra. Geometric algebras are the language we use
for the pose problem and the main argument for choosing this language is its
possibility of coupling projective, kinematic and Euclidean geometry by using
a conformal model. Besides, it enables a coordinate-free and dense symbolic
representation. In this work we will only present basic principles of geometric
algebras to give an idea of the rich properties of geometric algebras. A more
detailed introduction to geometric algebras can be found in [13, 14].

The main idea of geometric algebras G is to define a product on basis vectors
which extends a linear vector space V of dimension n to a linear space of dimen-
sion 2n with rich subspace structure. The elements are so-called multivectors as
higher order algebraic entities in comparison to vectors of a vector space as first
order entities. A geometric algebra is denoted as Gp,q with n = p + q. Here p

and q indicate the numbers of basis vectors which square to +1 and −1, respec-
tively. The product defining a geometric algebra is called geometric product and
is denoted by juxtaposition, e.g. uv for two multivectors u and v. Operations
between multivectors can be expressed by special products, called inner ·, outer

∧, commutator × and anticommutator × product. The idea behind conformal
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Fig. 1. Left: Visualization of a stereographic projection for the 1D case: Points on the
line e1 are projected on the (unit) circle and vice versa. Right: Visualization of the
homogeneous model for a stereographic projection in the 1D case. All stereographic
projected points are on a cone, which is a null cone in the Minkowski space.

geometry is to interpret points as stereographically projected points. This means



augmenting the dimension of space by one. The method used in a stereographic
projection is visualized for the 1D case in the left image of figure 1: Points x on
the line e1 are mapped to points x′ on the unit circle by intersecting the line
spanned by the north pole n and x with the circle. The basic formulas for pro-
jecting points in space on the hypersphere and vice versa are for example given
in [10]. Using a homogeneous model for stereographic projected points means to
augment the coordinate system by a further additional coordinate whose unit
vector now squares to minus one. In 1D this leads to a cone in space, which is
visualized in the right image of figure 1. This cone is spanned by the original co-
ordinate system, an augmented dimension for the stereographic projection and
an homogeneous dimension. This space is chosen to have a Minkowski metric
and leads to a representation of any Euclidean point on a null cone (1D case) or
a null hypercone (3D case). In [14] it is further shown that the conformal group
of IRn is isomorphic to the Lorentz group of IRn+1,1 which has a spinor represen-
tation in Gn+1,1. We will take advantage of both properties of the constructed
embedding which are the representation of points as null-vectors and the spinor
representation of the conformal group.

The conformal geometric algebra G4,1 (CGA) [8, 13] is suited to describe
conformal geometry. The point at infinity, e ≃ n, and the origin, e0 ≃ s, are
special elements of the representation which are used as basis vectors instead of
e+ and e− because they define a null space in the conformal geometric algebra.
A Euclidean point x ∈ IR3 can be represented as a point x on the null cone by
taking x = x + 1

2
x2e + e0. The multivector concepts of geometric algebras then

allow to define entities like points, lines, planes, circles or spheres. Rotations
are represented by rotors, R = exp

(
− θ

2
l
)
. The parameter of a rotor R is the

rotation angle θ applied to a unit bivector l which represents the dual of the
rotation axis. The rotation of an entity can be performed by its spinor product

X ′ = RXR̃. The multivector R̃ denotes the reverse of R. A translation t can

be expressed in a similar manner with a translator, T = exp
(
et
2

)
. A rigid body

motion can be expressed as a screw motion [9]. The motor M describing a screw
motion has the general form M = exp(− θ

2
(n + em)), with a unit bivector n

and an arbitrary 3D vector m. The pair (θn, θm) in the exponential term is
also called a twist [2].
Constraint equations for pose estimation
Now we start to express the 2D-3D pose estimation problem for pure point
correspondences: a transformed object point has to lie on a projection ray, re-
constructed from an image point. Let X be a 3D object point given in CGA. The

(unknown) transformation of the point can be described as MXM̃ . Let x be
an image point on a projective plane. The projective reconstruction of an image
point in CGA can be written as Lx = e ∧O ∧x. The line Lx is calculated from
the optical center O, the image point x and the vector e as the point at infinity.
The line Lx is given in a Plücker representation. Collinearity can be described by
the commutator product. Thus, the 2D-3D pose problem for a point X ∈ IR4,1

can be formalized as constraint equation in CGA,

(MXM̃ ) × (e ∧ O ∧ x) = 0.



Constraint equations which relate 2D image lines to 3D object points or 2D
image lines to 3D object lines can be expressed in a similar manner. Note: The
constraint equations in the unknown motor M express a distance measure which
has to be zero. The minimization of that distance leads to estimates of the pose.
Fourier descriptors in CGA
Fourier descriptors are often used for object recognition [5] and affine pose esti-
mation [1] of closed contours. We are now concerned with the formalization of
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Fig. 2. Visualization of surface modeling and approximation by using three 2D Fourier
descriptors.

3D Fourier descriptors in CGA. We assume a two-parametric surface of the form

F (φ1, φ2) =

3∑

i=1

f
i(φ1, φ2)ei.

This means, we have three 2D functions f i(φ1, φ2) : IR2 → IR acting on the
different base vectors ei. For a discrete number of sampled points, f i

n1,n2
, (n1 ∈

[−N1, N1]; n2 ∈ [−N2, N2]; N1, N2 ∈ IN) on the surface, we can now interpolate
the surface by using a 2D discrete Fourier transform (2D-DFT) and then apply
an inverse 2D discrete Fourier transform (2D-IDFT). The surface can therefore
be approximated as a series expansion

F (φ1, φ2) ≃

3∑

i=1

N1∑

k1=−N1

N2∑

k2=−N2

p
i
k1,k2

exp

(
2πk1φ1

2N1 + 1
li

)
exp

(
2πk2φ2

2N2 + 1
li

)

=

3∑

i=1

N1∑

k1=−N1

N2∑

k2=−N2

R
k1,φ1

1,i R
k2,φ2

2,i p
i
k1,k2

R̃
k2,φ2

2,i R̃
k1,φ1

1,i .

Here we have replaced the imaginary unit i =
√
−1 with three different rotation

axes, represented by the bivectors li, with li
2 = −1. The complex Fourier series



coefficients are contained in the vectors pi
k1,k2

that lie in the plane spanned by
li. We will call them phase vectors. These vectors can be obtained by a 2D-DFT
of the sample points f i

n1,n2
on the surface,

p
i
k1,k2

=
1

(2N1 + 1)(2N2 + 1)

N1∑

n1=−N1

N2∑

n2=−N2

f
i
n1,n2

exp

(
−

2πk1n1

2N1 + 1
li

)
exp

(
−

2πk2n2

2N2 + 1
li

)
ei.

This is visualized in figure 2: a two-parametric surface can be interpolated and
approximated by using the estimated 2D Fourier descriptors.
Pose estimation of free-form surfaces

So far we have introduced the basic constraint equations for pose estimation and
the surface representation of objects. We now continue with the algorithm for
silhouette based pose estimation of surface models. In our scenario, we assume

Fig. 3. Left: The projected surface model on a virtual image. Right: The estimated 3D
silhouette of the surface model, back projected in an image.

to have extracted the silhouette of an object in an image. To compare points
on the image silhouette with the surface model, the idea is to work with those
points on the surface model which lie on the outline of a 2D projection of the
object. This means we work with the 3D silhouette of the surface model with
respect to the camera. To obtain this, the idea is to project the whole surface on
a virtual image. Then the contour is calculated and from the image contour the
3D silhouette of the surface model is reconstructed. This is visualized in figure
3. The contour model is then used within our contour based pose estimation
algorithm [11]. We are applying an ICP-algorithm [16]. Since the aspects of
the surface model are changing during the ICP-cycles, a new silhouette will be
estimated after each cycle to deal with occlusions within the surface model.

Solving a set of constraint equations for a free-form contour with respect
to the unknown motor M is a non-trivial task, since a motor corresponds to
a polynomial of infinite degree. In [12] we presented a method which does not
estimate the rigid body motion on the Lie group SE(3), but the parameters
which generate their Lie algebra se(3), comparable to the ideas, presented in [2].
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Fig. 4. The algorithm for pose estimation of surface models.

This means we linearize and iterate the equations. It corresponds to a gradient
descent method in the 3D space. The algorithm for pose estimation of surface
models is summarized in figure 4.

3 Experiments

Figure 5 shows different approximation levels of the surface model of a car. The
approximations are achieved by using not all phase vectors of the surface model,
but a subset leading to a low-pass description of the surface model. The object
model itself consists of 69 × 21 ≈ 1450 3D points. In 3D it has a height, width
and depth of 11cm × 21cm × 10cm and is used for the experiments in figures
6 and 7. The convergence behavior of the algorithm is shown in figure 6. As

2 4 10 51

Fig. 5. Different approximation levels of the surface model. In the examples, 2, 4, 10
and 51 Fourier descriptors are used.

can be seen, we refine the pose results by using a low-pass approximation of the
surface and by adding successively higher frequencies during the iteration. This
is basically a multi-resolution method and helps to avoid getting stuck in local
minima during the iteration.

Figure 7 shows different pose results obtained with our algorithm. Note, that
our algorithms are even able to deal with non-homogeneous background and with
camera noise. We implemented the sources in C++. The computing time of the



Module Time (ms) Module Time (ms) Module Time (ms)

2D-DFT 700ms Image processing 12 ms ICP-cycle 50 ms
2D-IDFT 12ms - 700 ms 3D silhouette 20 ms
Table 1. Time performance of the implemented modules. Note, the 2D-DFT and the
2D-IDFT are calculated once at the beginning of the image sequence.

3 4 6 32

Fig. 6. Pose results of the low-pass contours during the ICP cycle.

different involved modules is summarized in table 1. These values are obtained
with a Linux 2GHz machine. As can be seen, the 2D-DFT and 2D-IDFT are the
bottleneck for the time performance. Therefore, the 2D-DFT and the 2D-IDFT
is only estimated once at the beginning of the algorithm and the data is copied
and transformed with the estimated rigid motion.

The overall computing times vary with the number of ICP-cycles and is for
this object model around 400 ms for each image. We tested the algorithm on
different image sequences containing up to 600 images.

4 Discussion

In this work we present a novel approach for free-form surface pose estimation.
Free-form surfaces are modelled by three 2D Fourier descriptors and low-pass
information is used for approximation. The estimated 3D silhouette is then com-
bined with the pose estimation constraints. The coupling of geometry with signal
theory is achieved by using the conformal geometric algebra. In this language
we are able to fuse concepts, like complex numbers, Plücker lines, twists, Lie
algebras and Lie groups in a compact manner. The experiments show the basic

Fig. 7. Different pose results of the object model.



properties of the algorithm and future work will concentrate on collecting more
experiences with this approach, making stability experiments, etc.
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