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Abstract

In this article we discuss the 2D-3D pose estimation prob-
lem of 3D free-form contours. In our scenario we observe
objects of any 3D shape in an image of a calibrated cam-
era. Pose estimation means to estimate the relative posi-
tion and orientation (containing a rotation R and trans-
lation vector t) of the 3D object to the reference camera
system. The fusion of modeling free-form contours within
the pose estimation problem is achieved by using the con-
formal geometric algebra. Free-form contours are modeled
as 3D Fourier descriptors and combined with an ICP (Itera-
tive Closest Point) algorithm they are embedded in the pose
problem as unique entities. In this work we further concen-
trate on modeling multiple object contours (coming along
with object occlusions, etc.) and the modeling of object de-
formations. Object deformations are achieved by combining
kinematic chains within Fourier descriptors.

1 Introduction and preliminary work

Pose estimation itself is one of the oldest computer vision
problems. Algebraic solutions with different camera mod-
els have been proposed for several variations of this prob-
lem. Pioneering work was done in the 80’s and 90’s by Lowe
[Lowe 1980; Lowe 1987], Grimson [Grimson 1990] and oth-
ers. In their work, point correspondences are used. More
abstract entities can be found in [Zerroug et al 1996; Krieg-
mann et al 1992; Bregler et al 1998]. Discussed entities
are circles, cylinders, kinematic chains or other multi-part
curved objects. Works concerning free-form curves can be
found in [Drummond et al 2000; Stark 1996]. In their work,
contour point sets, affine snakes, or active contours are used
for visual servoing.

Our recent work [Rosenhahn et al 2002] can be summa-
rized in the scenario of figure 1: We assume object features
like 3D points, 3D lines, 3D spheres, 3D circles or kinematic
chain segments of a reference model. Further, we assume
extracted corresponding features in an image of a calibrated
camera. The aim is to find the rotation R and translation
t of the object, which leads to the best fit of the reference
model with the actually extracted entities. To relate 2D
image information to 3D entities we interpret an extracted
image entity, resulting from the perspective projection, as
a one dimension higher entity, gained by projective recon-
struction from the image entity. This idea will be used to
formulate the scenario as a pure kinematic problem.

The problem with feature based pose estimation is that
there exist many scenarios (e.g. in natural environments) in
which it is not possible to extract point-like features such
as corners or edges. Then there is need to deal for exam-
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Figure 1: The scenario. The assumptions are the projective
camera model, the model of the object and corresponding
extracted entities on the image plane. The aim is to find the
pose (R, t) of the model, which leads to the best fit of the
object with the actually extracted entities.

ple with the silhouette of the object as a whole, instead of
sparse local features on the silhouette. Besides, there exist
3D objects which cannot adequately be represented by prim-
itive object features such as points, lines or circles. These
are the scenarios we address in this paper through the use
of free-form contours.

2 The pose problem in conformal geomet-
ric algebra

This section concerns the formalization of the pose problem
in conformal geometric algebra. Geometric algebras are the
language we use for our pose problem and the main argu-
ments for using this language are its dense symbolic repre-
sentation and its coupling of projective and kinematic geom-
etry. We will first introduce the basic notation of conformal
geometric algebra and then continue with the modeling of
entities and their kinematic transformations. We make use
of it to model free-form contours in the 3D space. Then we
combine this formalization within the pose estimation prob-
lem.

Introduction to conformal geometric algebra

‘We now introduce the main properties of the conformal ge-
ometric algebra (CGA) [Li et al 2000]. The aim is to clarify



the notations. A more detailed introduction concerning ge-
ometric algebras can be found in [Sommer 2001].

The main idea of geometric algebras G is to define a prod-
uct on basis vectors, which extends the linear vector space
V of dimension n to a linear space of dimension 2". The
elements are so-called multivectors as higher order algebraic
entities in comparison to vectors of a vector space as first
order entities. A geometric algebra is denoted as G, , with
n = p+ q. Here p and ¢ indicate the numbers of basis vec-
tors which square to +1 and —1, respectively. The product
defining a geometric algebra is called geometric product and
is denoted by juxtaposition, e.g. wwv for two multivectors u
and v. Operations between multivectors can be expressed
by special products, called inner -, outer A, commutator x
and anticommutator X product.
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Figure 2: Visualization of the homogeneous model for stere-
ographic projections for the 1D case. All stereographic pro-
jected points are on a cone, which is a null-cone in the
Minkowski space.

The idea behind conformal geometry is to interpret points
as stereographic projected points. The rule for a stereo-
graphic projection has a nice geometric description and is
visualized for a homogeneous 1D case in figure 2: Think of
the earth as a transparent sphere, intersected on the equa-
tor by an equatorial plane. Now imagine a light bulb at the
north pole m, which shines through the sphere. Each point
on the sphere casts a shadow on the paper, and that is where
it is drawn on the map. The basic formulas for projecting
points in space on the sphere and vice versa are for example
given in [Needham 1997]. Using a homogeneous model for
stereographic projected points leads to a cone in the space,
which is visualized in figure 2. This cone is spanned by one
positive and one negative squaring basis vector, introducing
a Minkowski metric and leading to a null-cone.

The conformal geometric algebra G4 1 (CGA) [Li et al
2000] is suited to describe conformal geometry and it con-
tains spheres as entities and a rich set of geometric manipu-
lations. The point at infinity, n ~ e, and the origin, s ~ eo,
are special elements and define a null space in the conformal
geometric algebra. Evaluating the point x on the cone leads
to

1 5
xr = x+ 5:1: e + ep.
This point representation can be interpreted as a sphere with
radius zero. A general sphere, defined by the center p and
the radius p, is given as

1
s = pt5(° —pete

and a point x is on a sphere s iff £ - 8 = 0. The multi-
vector concepts of geometric algebras then allow to intersect
spheres and define elements, like points, lines, planes or cir-
cles as entities, generated from spheres.

Rotations are represented by rotors, R = exp (—%l). The

components of the rotor R are the unit bivector  which rep-
resents the dual of the rotation axis, and the angle  which
represents the amount of the rotation. The rotation of an

entity can be performed by its spinor product X' = RX. R.

The multivector R denotes the reverse of R. A translation
can be expressed by a translator, T' = (1+ eTt) = exp (eTt .
To estimate the rigid body motion (containing a rotor R and
translation vector t), we follow e.g. [Murray et al 1994]: A
rigid body motion can be expressed by a rotation about a line
in space. This results from the fact that for every g € SE(3)
exists a £ € se(3) and a 8 € R such that g = exp(£0). The
element £ is also called a twist. The motor M describing

a twist transformation has the general form M = TRT,
denoting the inverse translation, rotation and back transla-
tion, respectively. But whereas in Euclidean geometry, Lie
algebras and Lie groups are only applied on point concepts,
the motors and twists of the CGA can also be applied on
other entities, like lines, planes, circles, spheres, etc.
Constraint equations for pose estimation

Now we express the 2D-3D pose estimation problem: a
transformed object entity has to lie on a spatial entity, pro-
jectively reconstructed from an image entity. Let X be an
object point and L be an object line, given in CGA. The (un-
known) transformations of the entities can be described as

MXM and M LM, respectively. Let  be an image point
and I be an image line on a projective plane. The projective
reconstruction of an image point in CGA can be written as
L, =e ANO Az. The entity L_ is a circle, containing the
vector O as the optical center of the camera, see e.g. figure
1, the image point  and the vector e as the point at infin-
ity. This leads to a reconstructed projection ray. Similarly
leads P, = e A O Al to a reconstructed projection plane
in CGA. Collinearity and coplanarity can be described by
the commutator and anticommutator products. Thus, the
constraint equations of pose estimation from image points
read
X M) X e AN(OAm)
~~ S——
bt el recanstrucred foam

the image point
rigid motion of the object point & P
N

(M

I
e

~~
collinearity of the transformed object
point with the reconstructed line

Constraint equations which relate 2D image lines to 3D ob-
ject points, or 2D image lines to 3D object lines, can be
expressed in a similar manner. Note: The constraint equa-
tions in the unknown motor M express a distance measure
which has to be zero. This is e.g. shown in [Rosenhahn et al
2000].

Fourier descriptors in CGA

Fourier descriptors are often used for object recognition
[Granlund 1972; Zahn et al 1996] and affine pose estima-
tion [Arbter et al 1991; Reiss 1993] of closed contours. We
now concern the formalization of Fourier descriptors in CGA
to combine it with our previous introduced pose estimation
constraints. Let

U

R! = exp(— T l)v

?

where T' € R is the length of the closed curve, u; € Z is a
frequency number and ! is a unit bivector which defines the

rotation plane. Furthermore is IN%? = exp(mu;p/T1l). Recall



that 12 = —1 and we can therefore write the exponential
function as exp(4l) = cos(¢) + sin(¢)l. We can now write
any closed, planar curve C(¢) as a series expansion

N N
27k ~
C(¢) = lim E Py €xp (”T¢t> = lim R?p, Ry.
N — oo N — oo
k=—N

k=—N
This can be interpreted as a Fourier series expansion, where
we have replaced the imaginary unit 4 = /—1 with [ and the
complex Fourier series coefficients with vectors that lie in the
plane spanned by I. The vectors p, are the phase vectors.
In general it may be shown that for every closed curve there
is a unique set of phase vectors {p,} that parameterizes
the curve. In figure 3 a closed curve is shown in the yz-

Figure 3: Projections of a curve interpreted as time dependend

function.

plane. Suppose that instead of C(¢) we consider Cs(¢) :=
C(¢) + 27¢/T e1, where e; is the unit vector along the z-
axis. The z-axis can be interpreted as an additional time
axis. If we project Cs(¢) onto the zy-plane and zz-plane,
we obtain the two other curves shown. This visualizes the
well known fact that we can regard any periodic function in
a space of dimension n as the projection of a closed curve in
a space of dimension n + 1.

The phase vectors {p,} are also called Fourier descrip-
tors. It has long been known that one can also construct
affine invariant Fourier descriptors [Granlund 1972], that is,
entities that describe a closed curve and stay invariant under
affine transformations of the curve. We also attempted to
perform a projective pose estimation via Fourier descriptors.
Unfortunately, there are two major problems. First of all, if
a closed curve is projected projectively, then the projected
curve will not be sampled in the same way as the original
curve. This already distorts the Fourier descriptors. Sec-
ondly, going through the equations we found that in order
to solve the projective pose estimation problem via Fourier
descriptors, one has to find analytic solutions to nth degree
polynomials. Since this is not possible in general, we cannot
follow this approach. We therefore investigated a different
approach for the pose estimation of projected closed curves,
which leads to a kinematic description of the pose problem.

3 Pose estimation of free-form contours

We assume a given closed, discretizied 3D curve, that is a
3D contour C' with 2N sampled points in both the spatial
and spectral domain with phase vectors p;, of the contour.
‘We now replace a Fourier series development by the discrete
Fourier transform. Then the interpolated contour can be
expressed in the Euclidean space as

- @
> RipR;.
k=—N

Clo) =

For each ¢ does C(¢) lead to a point in the Euclidean
space. We first have to transform this expression to con-
formal space. Then we can substitute this expression into
the constraint equations for the pose estimation. The trans-
formation of the Fourier descriptors in the conformal space
can be expressed as

N
~¢
Z Rip. R, | +e-

k=—N

eN(C(p)+e) = eA

The innermost parenthesis contains the Fourier descriptors
in Euclidean space. The next parenthesis transform this
expression to homogeneous space and then it is transformed
to conformal space. Substituting this expression into the
pose constraint equation leads to

(M(e A (C(¢) +e-)M) x (eA(OAZ) = 0
N
M|eAn Z R;’: P Ef +e_ I\A//I
k=—N
X (eAn(OA=)) = O

The interpretation of this equation is simple: The innermost
part contains the substituted Fourier descriptors in the con-
formal space. This is then coupled with the unknown rigid
body motion (the motor M) and compared with a recon-
structed projection ray, also given in the conformal space.

Solving a set of constraint equations for a free-form con-
tour with respect to the unknown motor M is a non-trivial
task, since a motor corresponds to a polynomial of infinite
degree. In [Rosenhahn et al 2002] we presented a method
which does not estimate the rigid body motion on the Lie
group SE(3), but the parameters which generate their Lie
algebra se(3) (twist approach), comparable to the ideas, pre-
sented in [Bregler et al 1998; Lowe 1987]. Note: though the
equations are expressed in a linear manner with respect to
the group action, the equations in the unknown generators
of the group action are non-linear and in the twist approach
they will be linearized and iterated. This corresponds to a
gradient descend method in the 3D space.

4 Experiments

In this section we present experimental results of free-form
contour pose estimation. Therefore we will start with an
introduction to the main algorithm for pose estimation of
free-form contours. Though the numerical estimation of the
pose parameters is already clarified in the last section, the
main problem is to determine suited correspondences be-
tween 2D image features and points on the 3D model curve.
Therefore a version of an ICP-algorithm is presented. To
deal with 3D objects and partial occluded aspects of objects



during tracking, we then present a modified version of our al-
gorithm. There we are able to deal with occlusion problems
by using sets of Fourier descriptors to model aspects of the
object within different scenarios. The experiments conclude
with modeling object deformations by combining kinematic
chains within the Fourier descriptors for object modeling.

Using our approach for pose estimation of point-line cor-
respondences, the algorithm for free-form contours consists
of iterating the following steps:

(a) Reconstruct projection rays from the image points.
(b) Estimate the nearest point of each projection ray
to a point on the 3D contour.
(c) Estimate the pose of the contour with the use of this
correspondence set.
(d) goto (b).

The idea is, that all image contour points simultane-
ously pull on the 3D contour. The algorithm itself cor-
responds to the well-known ICP algorithm, e.g. discussed
in [Rusinkiewicz et al 2001; Zang 1999]. But whereas it is
mostly applied on sets of 2D or 3D points we apply it on a
trigonometric interpolated function and from image points
reconstructed projection rays. Note that this algorithm only
works if we assume a scenario where the observations in the
image plane are not too different. Thus, it is useful for track-
ing tasks. Further the monotonous convergence does some-
times lead to local minima. To avoid such local minima
we also use low-pass information for contour approximation
during the iteration. A projection of the used object model
for our first experiments is shown in figure 4. The discrete
points and different approximation levels are shown. The

Figure 4: The different approximation levels of the 3D object
contour.

principle of the ICP-algorithm during tracking is visualized
in figure 5. There the chosen correspondences are also vi-
sualized by projecting them into the image. Note, that the
correspondences are chosen in the 3D space, since the 3D
contour points are related to 3D projection rays.

Figure 6 shows the computing times for an image sequence
containing 520 images. The computing time for each image
varies between 20ms and 55ms. The average computing time
is 34ms, which is equivalent to 29 fps. These results were
achieved with a 2GHz Pentium 4 computer.
Simultaneous pose estimation of multiple contours

In the previous experiment our object model is assumed
as one (closed) contour. But many 3D objects can more
easily be represented by a set of 3D contours expressing the
different aspects of the object. We will now extend the object
model to a set of 3D contours. The main problem is, how to
deal with occluded or partially occluded contour parts of the

Figure 5: visualization of the ICP-algorithm during the it-
eration.
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Figure 6: Computing times for an image sequence containing
520 images.

object. Here, the contours are assumed as rigidly coupled
to each other. This means that the pose of one contour
automatically defines the pose of the other

Our algorithm to deal with partially occluded object parts
is simple and effective:

Assumptions: n 3D contours, one boundary contour in the image,
dist(P,R) is a distance function between a
3D point P and a 3D ray R.

Result: Correspondences and pose.

(a) Reconstruct projection rays from the image points.
(b) For each projection ray R:
(c) For each 3D contour:
(c1) Estimate the nearest point P1 of ray R to a
point on the contour.
(c2) if (n==1) choose P1 as actual P for the
point-line correspondence
(c3) else compare P1 with P:
if dist(P1,R) is smaller than dist(P,R)
then choose P1 as new P
(d) Use (P,R) as correspondence set.
(e) Estimate pose with this correspondence set
(f) Transform contours, goto (b)



Figure 7: Pose results of an object with partially occluded
contours. The left image shows the original image. The
middle image shows the extracted silhouette and the right
image visualizes the pose result.

Figure 8: Pose results of an image sequence containing dif-
ferent aspect changes and degenerate situations.

The idea is to apply our ICP-algorithm not to one image
contour and one 3D contour, but now to one image contour
and a set of 3D contours.

This implies that for each extracted image point must
exist one model contour and one point on this contour, which
corresponds to this image point. Note, that the reverse is in
general not the case.

Figure 7 visualizes the problem of partially occluded con-
tour points. The only image information we use is the ob-
served boundary contour of the object. By using a priori
knowledge (e.g. assuming a tracking assumption), the pose
can be recovered uniquely. This means, our algorithm can in-
fer the position of hidden components from the visible com-
ponents.

Our algorithm can even deal with aspect changes of the
contour in an efficient manner. This is demonstrated in fig-
ure 8 in case of quiet different aspects of a 3D object. The
images are taken from an image sequence containing 325 im-
ages. In this image sequence we put the object on a turn
table and rotate it 360° degree. Because the aspects of the
object is changing, half-side models can no longer be used.
Our tracking algorithm does not fail and is even able to cope
with degenerate situations.

In another experiment, we use as object model the shape

Figure 9: Approximations of the tree model and pose results
of the tree model during an image sequence.

of a 3D tree. The contour approximations and pose results
are shown in figure 9. The interesting part of this model, in
contrast to the previous ones, is that it contains two nested
contours. Consequently, it is much more complicated than
the previous models.

Modeling deformable objects

In the last experiment we want to report on our results in
modeling slight object deformations during tracking. The
ideais to embed an additional deformation function D within
the pose constraints. To obtain such deformations, we cou-
ple the Fourier descriptors with kinematic chains. This is
visualized in the right example of figure 10.

Figure 10: Possible deformation of a sheet of paper along
the y-axes and their representation as kinematic chain.

2-Twist kinematic chain 3-Twist kinematic chain

1-Twist kinematic chain

Figure 11: Pose result of a free-form object containing one,
two or three kinematic chain segments.

Figure 11 visualizes the results of the algorithm for differ-
ent numbers of used twists and shows that not many twists
are needed to get a good approximation of the deformation.
In our experiments we use 3-5 twists. Figure 12 shows pose
results of an image sequence and visualizes the pose quality.
As can be seen, the quality is very good, but more important
is the fact, that the computing time does not increase too
much. In our actual version we need a computing time of 70
ms for each image on a Linux 2 GHz machine, to estimate
the pose and deformation angles.



Figure 12: Pose results of a free-form object taken from an
image sequence with 520 images.

5 Discussion

This work concerns the problem of 2D-3D pose estimation
of 3D free-form contours. We assume the knowledge of a 3D
object, which contains one or more contours modelling the
aspects of the object. Furthermore, we assume a calibrated
camera and observe the silhouette of the object in the cam-
era. The aim is to estimate the pose, which leads to a best
fit between image and model data. We explain how to es-
timate 3D closed contours by using 3D Fourier descriptors
and use the conformal geometric algebra to compare the 3D
contours with (from image points) reconstructed projection
rays. This leads to constraint equations which are solved by
using a gradient descend method, combined with an ICP-
algorithm. The experiments show the efficiency of our al-
gorithm on different image sequences. We further deal with
partially occluded object features and nested contours and
show, that even extensions like the modeling of object de-
formations by combining Fourier descriptors with kinematic
chains is possible in this framework.
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