
Iterative Low Complexity Factorization for

Projective Reconstruction

Hanno Ackermann and Kenichi Kanatani

Department of Computer Science
Okayama University, 700-8530 Okayama, Japan
{hanno,kanatani}@suri.it.okayama-u.ac.jp

Abstract. We present a highly efficient method for estimating the struc-
ture and motion from image sequences taken by uncalibrated cameras.
The basic principle is to do projective reconstruction first followed by
Euclidean upgrading. However, the projective reconstruction step domi-
nates the total computational time, because we need to solve eigenprob-
lems of matrices whose size depends on the number of frames or feature
points. In this paper, we present a new algorithm that yields the same
solution using only matrices of constant size irrespective of the number
of frames or points. We demonstrate the superior performance of our
algorithm, using synthetic and real video images.

1 Introduction

Various methods are known for recovering the structure and motion of a rigid
body from image sequences taken by uncalibrated cameras [4]. A popular ap-
proach is to reconstruct the structure up to projectivity first and then to modify
it into a correct Euclidean shape. The first stage is called projective reconstruc-

tion, the second Euclidean upgrading.
Some algorithms recover the projective structure by utilizing so-called mul-

tilinear constraints, which relate corresponding points in different images. For
two images, this constraint is expressed by the fundamental matrix. For three
and four views, the trifocal and quadrifocal tensors relate corresponding points,
respectively. The use of multilinear constraints means, however, that particular
pairs, triplets, or quadruples of images are chosen. For affine reconstruction, on
the other hand, the popular Tomasi-Kanade factorization [11] handles all avail-
able data in a uniform way. Following this idea, Sturm and Triggs [9] extended
the factorization formalism to perspective projection. However, their algorithm
still relies on pair-wise epipolar constraints.

Later, Heyden et al. [5] and Mahamud and Hebert [7] introduced new fac-
torization algorithms for projective reconstruction. They utilized the fact that
the joint coordinates of rigidly moving 3-D points are constrained to be in a
4-dimensional subspace. They estimated the unknown projective depths by min-
imizing the distances of these joint coordinates to the subspace, alternating the
subspace fitting and the projective depth optimization. These algorithms are
summarized in [6].

2 Hanno Ackermann and Kenichi Kanatani

However, it has been recognized that the projective depth optimization re-
quires a long computation time due to the necessity to iteratively solve eigen-
problems of matrices whose size depends on the number of frames or the number
of points. Recently, Ackermann and Kanatani [1] proposed a simple scheme for
accelerating the projective depth optimization, replacing the eigenvalue com-
putation with the power method coupled with further acceleration techniques.
They demonstrated that the computation time can significantly reduce.

This work further improves their method. We show that the projective depth
optimization can be done by solving eigenproblems of matrices of constant size
irrespective of the number of frames or points. In Section 2, we analyze two
projective reconstruction algorithms, geometrically dual to each other [1]: one is
due to Mahamud and Hebert [7]; the other due to Heyden et al. [5]. In Section 3,
we show how the complexity of these algorithms can be reduced. We also point
out that the use of SVD for subspace fitting is not necessary at each iteration.
Using synthetic and real video images, we demonstrate in Section 4 that our
algorithm outperforms the method of Ackermann and Kanatani [1]. Section 5
concludes this paper.

2 Projective Structure and Motion

2.1 Rank Constraint

Suppose N rigidly moving points are tracked through M consecutive frames
taken by an uncalibrated camera (possibly with varying intrinsic parameters).
The perspective projection of the αth point onto the κth frame can be modeled
by

zκαxκα = ΠκXα, xκα =

uκα/f0

vκα/f0

1

 , (1)

where (uκα, vκα) denote the measured point positions, and f0 is a scale factor
for numerical stabilization [3]. Here, zκα are scalars called projective depths , Πκ

are 3×4 projection (or camera) matrices consisting of the intrinsic and extrinsic
parameters of the κth frame, and Xα are the 3-dimensional positions of the
αth point in homogeneous coordinates. If we define the 3M ×N matrix W , the
3M × 4 matrix Π , and the 4 × N matrix X by

W =

z11x11 · · · z1Nx1N

...
. . .

...
zM1xM1 · · · zMNxMN

 , Π =

Π1

...
ΠM

 , X =

(
X1 · · · XN

)
, (2)

the first of Eqs. (1) for κ = 1, ..., M and α = 1, ..., N is written simply as

W = ΠX. (3)

Since Π is 3M × 4 and X is 4 × N , the matrix W generally has rank 4.

Iterative Low Complexity Factorization for Projective Reconstruction 3

Let wα be the αth column of W . The absolute scale of the projective depths
is indeterminate, because multiplying zκα, κ = 1, ..., M , by a constant c is
equivalent to multiplying the homogeneous coordinate vector Xα, whose scale is
indeterminate, by c. Hence, we can normalize each wα to ‖wα‖ = 1. Now, we
rewrite wα as follows:

wα = Dαξα, (4)

Dα ≡

x1α/‖x1α‖ · · · 0
...

. . .
...

0 · · · xMα/‖xMα‖

 , ξα ≡

z1α‖x1α‖
...

zMα‖xMα‖

 . (5)

We see that ξα is a unit vector:

‖ξα‖
2 = z2

1α‖x1α‖
2 + · · · + z2

Mα‖xMα‖
2 = ‖wα‖

2 = 1. (6)

Alternatively, let wi
κ be the (3κ + i)th row of W for i = 1, 2, 3. This time,

we adopt normalization ‖w1
κ
‖2 + ‖w2

κ
‖2 + ‖w3

κ
‖2 = 1 for each κ. We rewrite wi

κ

as

wi

κ
= Di

κ
ξκ, (7)

Di

κ ≡

xi

κ1/‖xκ1‖ · · · 0
...

. . .
...

0 · · · xi

κM
/‖xκM‖

 , ξκ ≡

zκ1‖xκ1‖
...

zκN‖xκN‖

 , (8)

where xi

κα
denotes the ith component of xκα. We see that ξκ is a unit vector:

‖ξκ‖
2 = z2

κ1‖xκ1‖
2 + · · · + z2

κM‖xκM‖2 = ‖w1
κ‖

2 + ‖w2
κ‖

2 + ‖w3
κ‖

2 = 1. (9)

In the following, we consider two methods. In one, we regard each column
wα of W as a point in 3M dimensions; in the other, each triplet of rows {w1

κ
,

w2
κ, w3

κ} of W is regarded as a point in 3N dimensions. The first, which we call
the primal method, uses Eq. (4) for computing W ; the second, which we call the
dual method, uses Eq. (7). Both methods utilize the rank constraint on W .

2.2 Primal Method

Ideally, i.e., if the projective depths zκα are correctly chosen, and if there is no
noise in the data xκα, the matrix W should have rank 4. Hence, all columns
wα of W should be constrained to be in a 4-dimensional space L. Let U be the
3M × 4 matrix consisting of its orthonormal basis vectors as its columns. Then,
we can identify U with Π and X with U⊤W , which ensures W = ΠX due to
the orthonormality of U . We define the reprojection error by

ǫ = f0

√
√
√
√ 1

MN

M∑

κ=1

N∑

α=1

‖xκα − Z[ΠκXα]‖2, (10)

4 Hanno Ackermann and Kenichi Kanatani

where Z[·] denotes normalization to make the third component 1. This repro-
jection error should ideally be 0, but if the projective depths zκα are not correct
or there is noise in the data xκα, it may not exactly be zero.

For starting the algorithm, the unknown projective depths zκα are initialized
to 1, which amounts to assuming affine cameras. Then, we estimate the L by
least squares. Namely, we regard the four eigenvectors of WW⊤ for the largest
four eigenvalues, or equivalently the four left singular vectors of W for the largest
four singular values, as an orthonormal basis of L.

Since the assumed zκα may not be correct, the columns wα of W may not
exactly be in the subspace L. So, we update zκα so as to minimize the distance of
each wα from L. Since wα is a unit vector, the solution is obtained by maximizing
its orthogonal projection onto L, namely maximizing

∥
∥U⊤wα

∥
∥

2
=

∥
∥U⊤Dαξα

∥
∥

2
= ξ⊤

α (D⊤

α UU⊤Dα)ξα, (11)

subject to ‖ξα‖ = 1. The solution is given by the unit eigenvector of D⊤
α UU⊤Dα

for the largest eigenvalue. Since the sign of the eigenvector ξα is indeterminate,
we choose the one for which the sum of its components is non-negative.

Next, we update each column wα of W by Eq. (4) and identify Π with U
and X with U⊤W . From the updated W , we compute the matrix U for the new
basis of L. Then, we update ξα by minimizing Eq. (11) and repeat this procedure
until the reprojection error in Eq. (10) becomes smaller than some pre-defined
threshold ǫmin. This process is a kind of EM algorithm, so the convergence is
guaranteed.

2.3 Dual Method

Since the matrix W should ideally have rank 4, all its rows wi

κ should also
be constrained to be in a 4-dimensional space L⋆. Let V be the N × 4 matrix
consisting of its orthonormal basis vectors as its columns. Then, we can identify
V ⊤ with X and Π with WV , which ensures W = ΠX due to the orthonormality
of V .

For starting the algorithm, the unknown projective depths zκα are again
initialized to 1. Then, we estimate the subspace L⋆ by least squares. Namely,
we regard the four eigenvectors of W⊤W for the largest four eigenvalues, or
equivalently the four right singular vectors of W for the largest four singular
values, as an orthonormal basis of L⋆.

Since the assumed zκα may not be correct, the rows wi

κ
of W may not exactly

be in the subspace L⋆. So, we update zκα so as to minimize the sum of the square
distances of the triplet wi

κ, i = 1, 2, 3, from L⋆. Since the sum of squares of wi
κ,

i = 1, 2, 3, is normalized to 1, the solution is obtained by maximizing the sum
of the squares of their orthogonal projections onto L⋆,

3∑

i=1

∥
∥V ⊤wi

κ

∥
∥

2
=

3∑

i=1

∥
∥V ⊤Di

κξκ

∥
∥

2
= ξ⊤

κ (

3∑

i=1

Di

κV V ⊤Di

κ)ξκ, (12)

Iterative Low Complexity Factorization for Projective Reconstruction 5

subject to ‖ξκ‖ = 1. The solution is given by the unit eigenvector of
∑3

i=1 Di

κV V ⊤Di

κ for the largest eigenvalue. Again, we choose the sign of ξκ

in such a way that the sum of its components is non-negative.
Next, we update each row wi

κ of W by Eq. (7) and identify X with V ⊤ and
Π with WV . From the updated W , we compute the matrix V for the new basis
of L. Then, we update ξκ by minimizing Eq. (12) and repeat this procedure
until the reprojection error in Eq. (10) becomes smaller than some pre-defined
threshold ǫmin. As in the case of the primal method, this process is guaranteed
to converge.

3 Complexity Analysis and Efficiency Improvement

3.1 Subspace Fitting

The basis of the subspace L for the primal method is obtained by computing
the eigenvectors of WW⊤, and the basis of the subspace L⋆ for the dual method
is obtained by computing the eigenvectors of W⊤W . Alternatively, they are
obtained by computing the singular vectors of W . We first analyze the complexity
of this subspace fitting computation.

For the primal method, computing WW⊤ requires (3M)2N operations,
where we regard multiplication followed by addition/subtraction as one oper-
ation1. Its eigenvalue computation takes approximately (3M)3 operations, so we
need about (3M)2(3M +N) operations in total. For the dual method, computing
W⊤W requires 3MN2 operations, and its eigenvalue computation takes approx-
imately N3 operations. So, we need about N2(3M +N) operations in total. The
singular value decomposition (SVD) of W , on the other hand, requires about
(3M)2N or 3MN2 operations, depending on whether 3M is smaller or larger
than N . In whichever case, SVD is obviously more efficient.

This subspace fitting is repeated each time the projective depths are updated.
However, we can expect that the basis computed in each step does not differ much
from the preceding one. Hence, we can save the SVD computation time if the
new basis can be updated by a small number of operations. For this, we use the
power method [1]: the basis vectors are multiplied by WW⊤ (primal) or W⊤W
(dual) followed by Gram-Schmidt orthogonalization [2].

As pointed out earlier, computing WW⊤ and W⊤W requires (3M)2N and
3MN2 operations, respectively. Multiplying a 3M -dimensional vector by WW⊤

costs (3M)2 operations, and multiplying an N -dimensional vector by W⊤W
costs N2 operations. Hence, the complexity of the power method is (3M)2N +
4k(3M)2 and 3MN2 + 4kN2 for the primal and dual methods, respectively,
where k is the number of iterations for the power method to converge.

Alternatively, multiplication by WW⊤ can be replaced by multiplication by
W⊤ (3MN operations) followed multiplication by W (3MN operations). Sim-
ilarly, multiplication by W⊤W can be replaced by multiplication by W (3MN

1 We disregard the fact that for computing the sum of products the number of addi-
tion/subtraction is smaller than the number of multiplication by one.

6 Hanno Ackermann and Kenichi Kanatani

operations) followed multiplication by W⊤ (3MN operations). Hence, this al-
ternative is advantageous if

(3M)2N + 4k(3M)2 ≥ 24kMN, or M ≥
8k

3 + 12k/N
, (13)

3MN2 + 4kN2 ≥ 24kMN, or N ≥
24k

3 + 4k/M
, (14)

for the primal and dual methods, respectively. Equation (13) is satisfied for M
≥ 3k, and Eq. (14) is satisfied for N ≥ 8k. According to our experiments, the
power method, whose convergence is theoretically guaranteed [2], almost always
converges after one or two iterations to sufficient precision for both the primal
and the dual methods. So, we adopt this alternative scheme.

3.2 Projective Depth Optimization

For computing the projective depths zκα, we need to compute the dominant
eigenvector (i.e., the eigenvector for the largest eigenvalue) of an M ×M matrix
for the primal method and of an N ×N matrix for the dual method. Since solv-
ing an eigenproblem has approximately cubic complexity, the projective depth
optimization dominates the entire projective reconstruction computation when
the number N of points or the number M of frames is large. To resolve this
problem, Ackermann and Kanatani [1] introduced a special variant of the power
method for eigenvalue computation and demonstrated that this can reduce the
computation time significantly. We now introduce a method that results in even
better performance.

For the primal method, we need to compute the dominant eigenvector ξα of
the M ×M matrix of Aα ≡ D⊤

α
UU⊤Dα (see Eq. (11)), which can be written as

Aα = (U⊤Dα)⊤ (U⊤Dα)
︸ ︷︷ ︸

≡ Cα

= C⊤

α Cα, (15)

where Cα is a 4 × M matrix. However, ξα can be obtained from the dominant
eigenvector ηα of the 4 × 4 matrix

Ãα = CαC⊤

α , (16)

in the form of ξα = C⊤

α
ηα. In fact, if CαC⊤

α
ηα = ληα, we have C⊤

α
CαC⊤

α
ηα =

λC⊤
α ηα, or Aαξ = λξα.
Once Cα is evaluated, computing Aα costs 4M2 additional operations. Its

eigenproblem has a complexity of M3. Computing Ãα costs 16M additional
operations, and its eigenproblem has a constant complexity of 64. Hence, it is
advantageous to solve the eigenproblem of Ãα if 4M2 + M3 ≥ 16M + 64, or
M ≥ 4. Theoretically, we may be able to accelerate the dominant eigenvector
computation of Ãα by the power method, but it has no practical merit; the
standard tool is sufficiently fast for such a small size.

Iterative Low Complexity Factorization for Projective Reconstruction 7

For the dual method, we need to compute the dominant eigenvector ξκ of
the N × N matrix Bκ ≡

∑3
i=1 Di

κV V ⊤Di
κ (see Eq. (12)), which can be written

as

Bκ =
(
D1

κV D2
κV D3

κV
)

V ⊤D1
κ

V ⊤D2
κ

V ⊤D3
κ

︸ ︷︷ ︸

≡ Cκ

= C⊤

κ Cκ, (17)

where Cκ is a 12× N matrix. As in the case of the primal method, however, ξκ

can be obtained from the dominant eigenvector ηκ of the 12 × 12 matrix

B̃κ = CκC⊤

κ
, (18)

in the form of ξκ = C⊤
κ ηκ.

Once Cκ is evaluated, computing Bκ costs 12N2 additional operations. Its
eigenproblem has a complexity of N3. Computing B̃α costs 144N additional
operations, and its eigenproblem has a constant complexity of 1728. Hence, it
is advantageous to solve the eigenproblem of B̃α if 12N2 + N3 ≥ 144N + 1728,
or N ≥ 12. As in the case of the primal method, we need not consider further
speedup; the standard tool is sufficient.

In the above analysis, we disregarded the fact that the M × M matrix Aα

and the N ×N matrix Bκ are symmetric and hence only their upper-triangular
and diagonal elements need to be evaluated. This reduces the evaluation cost
to nearly 50%, yet the advantage of dealing with the 4 × 4 matrix Ãα and the
12×12 matrix B̃κ is unchanged. The actual procedure of the above computation
is summarized in Algorithms (1) and (2).

In Algorithms (1) and (2), the reprojection error ǫ (Step 6) is evaluated at
each iteration step, but this can be omitted; we can simply stop when all values
cease to change by setting an appropriate threshold. This can further speed up
the computation, since the reprojection error evaluation takes time proportional
to the number of points and the number of frames. This also avoids setting too
low a reprojection error ǫ, which may never be reached. The reprojection error
evaluation in Step 6 is solely for comparing the convergence performance for a
common threshold, which is the theme of this paper.

4 Experimental Results

4.1 Synthetic Example

We now experimentally evaluate the efficiency of our algorithm. Figure 1 shows
six out of 256 frames of a synthetic image sequence. The object consists of
256 points inside a cuboid. They are perspectively projected onto 512 × 512
frames with focal length f = 600. Using this motion sequence, we compare our
algorithm with the original form [6], which we call the prototype, and the method
of Ackermann and Kanatani [1], which we call the power method for short. For
our algorithm, we set the reprojection error threshold to ǫmin = 0.1 (pixels) and

8 Hanno Ackermann and Kenichi Kanatani

Algorithm 1 Fast Projective Reconstruction: Primal Method

1: Input : Data vectors xκα, their norms ‖xκα‖, the normalized vectors N [xκα] =
xκα/‖xκα‖ for κ = 1, .., M , α = 1, .., N , the minimal reprojection error ǫmin, and
the threshold δ for terminating the subspace update.

2: Output : Projection matrices Πκ and 3-D points Xα.
3: Initialize the projective depths to zκα = 1.
4: Compute the matrix W by stacking the products zκαxκα into the vectors wα and

normalizing them to unit length.
5: Compute the matrix U of the subspace L consisting of the first four left singular

vectors u1, u2, u3, u4 of W .
6: while ǫ (in Eq. (10)) > ǫmin do

7: for α = 1 to N do

8: Compute the matrix Cα = U⊤Dα.
9: Compute the matrix Ãα.

10: Compute the dominant eigenvector ηα of Ãα.
11: Compute ξα = N [C⊤

α ηα].

12: if
∑

M

i=1
ξαi < 0 then

13: ξα = −ξα.
14: end if

15: end for

16: Update the matrix W .
17: Compute the projection matrices Πκ given by the row-triplets of Π = U .
18: Compute the 3-D positions Xα given by the columns of X = Π⊤W .
19: repeat

20: Assign u0

i ← ui, i = 1, ..., 4.
21: Compute ũi = W

(
W⊤u0

i

)
, i = 1, .., 4

22: Let ui, i = 1, .., 4, be their Gram-Schmidt orthonormalization.

23: until max4

i=1

√

1−
∑

4

l=1

(
u⊤

i
u0

l

)2

< 10−δ.

24: end while

the subspace fitting threshold to δ = 1. For the power method, we use the same
parameters as in [1].

The computation time for the primal method is approximately linear in the
number N of the points because the same computation is repeated for each point,
while the optimization of each point is generally nonlinear in the number M of
the frames because the eigenvalue computation is involved. The computation
time for the dual method, on the other hand, is approximately linear in M but
generally nonlinear in N , because the roles of points and frames are interchanged.
So, we created two series of test sequences.

For the primal method, we fixed the number of points to N = 256 and varied
M from 32 to 512 by inserting intermediate frames (the first and last frames are
the same as in Fig. 1). For the dual method, the number of frames was fixed
to M = 256, and N is varied from 32 to 512 by randomly adding new points.
We used Intel Core2Duo 1.8GHz CPU having 1GB main memory with Linux as
operating system.

Iterative Low Complexity Factorization for Projective Reconstruction 9

Algorithm 2 Fast Projective Reconstruction: Dual Method

1: Input : Data vectors xκα, their norms ‖xκα‖, the normalized vectors N [xκα] =
xκα/‖xκα‖ for κ = 1, .., M , α = 1, .., N , the minimal reprojection error ǫmin, and
the threshold δ for terminating the subspace update.

2: Output : Projection matrices Πκ and 3-D points Xα.
3: Initialize the projective depths to zκα = 1.
4: Compute the matrix W by stacking the products zκαxκα into the vectors wi

κ and
normalize them to unit length.

5: Compute the matrix V of the subspace L⋆ consisting of the first four right singular
vectors v1, v2, v3, v4 of W .

6: while ǫ (in Eq. (10)) > ǫmin do

7: for κ = 1 to M do

8: Compute the matrix Cκ =

V ⊤D1

κ

V ⊤D2

κ

V ⊤D3

κ

.

9: Compute the matrix B̃κ.
10: Compute the dominant eigenvector ηκ of B̃κ.
11: Compute ξκ = N [C⊤

κ ηκ].

12: if
∑

N

i=1
ξκi < 0 then

13: ξκ = −ξκ.
14: end if

15: end for

16: Update the matrix W .
17: Compute the 3-D positions Xα given by the columns of X = V .
18: Compute the projection matrices Πκ given by the row-triplets of Π = WX⊤.
19: repeat

20: Assign v0

i ← vi, i = 1, ..., 4.
21: Compute ṽi = W⊤ (Wvi), i = 1, .., 4.
22: Let vi, i = 1, .., 4, be their Gram-Schmidt orthonormalization.

23: until max4

i=1

√

1−
∑

4

l=1

(
v⊤

i
v0

l

)2

< 10−δ .

24: end while

Figure 2 shows the results for the primal and the dual methods on the left
and right, respectively. The solid lines indicate the prototype, the dashed lines
the power method, and the dotted lines our algorithm. The prototype clearly
performs very poorly both for the primal and the dual methods, as compared to
which the power method runs dramatically fast. As we can see from the figure,
however, our algorithm is even faster than the power method.

4.2 Other Examples

Figure 3(a) shows a sequence of 11 frames (six decimated frames are displayed
here) of 231 points on a cylindrical surface perspectively projected onto an image
frame of size 512 × 512 (pixels) with focal length f = 600 (pixels). We set the
reprojection error threshold to ǫmin = 0.1 (pixels) as in the previous examples.

10 Hanno Ackermann and Kenichi Kanatani

Fig. 1. Synthetic image sequence of 256 points through 256 frames (six frames deci-
mated).

 0

 100

 200

 300

 400

 0 100 200 300 400 500M

 0

 10

 20

 30

 0 100 200 300 400 500N

Fig. 2. Computation time (sec) for the synthetic sequence in Fig. 1 using the prototype
(solid lines), the power method (dashed lines), and our algorithm (dotted lines). The
left is for the primal method with N = 256, and the right is for the dual method with
M = 256.

Figure 3(b) shows a real video sequence of 200 frames (six decimated frames
are displayed here) of 16 points detected by KLT (the Kanade-Lucas-Tomasi
tracker) [10]; we manually interfered whenever tracking failed. The frame size
is 640 × 480 (pixels). For this sequence, we have found that the reprojection
error ǫ cannot not be reduced to less than 2.1 pixels however many times the
computation is iterated. This indicates that the points tracked by KLT have
uncertainty of about 2.1 pixels. In fact, we visually observed that the tracked
points had a few pixel fluctuations over the sequence. So, we set the reprojection
error threshold to ǫmin = 2.1 (pixels).

Table 1 lists the computation times (sec) for the two sequences. If the proto-
type is used, the primal method is more efficient than the dual method for the
sequence in Fig. 3(a), because the number of points is large while the number of
frames is small. For the real video sequence in Fig. 3(b), in contrast, the num-
ber of points is small while the number of frames large, so the primal method
requires much longer time than the dual method.

If the power method is used, however, the dual method is faster than the pri-
mal method for both sequences. In particular, the reduction of computation time
is significant for the sequence in Fig. 3(a). We can also see that the computation
time of the primal method for the real video sequence in Fig. 3(b) dramatically
reduces by using the power method. Yet, as we can see, our algorithm further
improves efficiency.

Iterative Low Complexity Factorization for Projective Reconstruction 11

(a)

(b)

Fig. 3. (a) Synthetic image sequence of 256 points through 256 frames (six frames
decimated). (b) Real video sequence of 16 points through 200 frames (six frames deci-
mated).

Table 1. Computation times (sec) for the sequences in Figs. 3(a) (left side) and 3(b)
(right side).

Fig. 3(a) Fig. 3(b)
Primal Dual Primal Dual

prototype 2.385 4.029 107.338 0.073

power method 0.873 0.050 0.772 0.062

our algorithm 0.801 0.036 0.690 0.056

As for the choice of the primal vs. the dual methods, the latter is almost
always preferable for practical applications whatever algorithm is used. This is
because the number of frames can be arbitrarily large if a video camera is used,
while the number of trackable feature points are very much limited.

5 Conclusions

We reformulated existing projective reconstruction algorithms, which solve the
eigenproblem of very large size matrices, into a form that involves only small
constant size matrices irrespective of the number of points or frames. Using
synthetic and real video sequences, we demonstrated that our algorithm requires
a very short time as compared with existing methods. The memory requirement
also reduces significantly.

Our algorithm is based solely on the algebraic structure of the problem. It
has often been pointed out that the reconstruction accuracy quickly deteriorates
as the noise in the input data becomes larger [4, 8] and that we need to incor-
porate various statistical optimization techniques, a typical one being iterative
refinement called bundle adjustment [12]. The focus of this paper is efficiency, so
we have not gone into the accuracy issue, which crucially depends on the quality
of the tracking data. To do statistical optimization, however, we need a good
initial value, which our algorithm can very efficiently provide.

Acknowledgments: The authors thank Akinobu Mori of Canon, Inc. for initiating

this project. They also thank Hirotaka Niitsuma of Okayama University for helpful

discussions. This work is partly supported by Mitsubishi Precision Co., Ltd.

12 Hanno Ackermann and Kenichi Kanatani

References

1. H. Ackermann and K. Kanatani, Robust and efficient 3-D reconstruction by self-
calibration, Proc. IAPR Conf. Machine Vision Applications, Tokyo, Japan, May
2007, pp. 178–181.

2. T. H. Golub and C. F. Van Loan, Matrix Computations, Johns-Hopkins University
Press, 3rd Ed., Baltimore, MD, U.S.A., 1996.

3. R. Hartley, In defense of the 8-point algorithm, IEEE Trans. Patt. Anal. Mach.

Intell., 19-6 (1997), 580–593.
4. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cam-

bridge University Press, Cambridge, U.K., 2000.
5. A. Heyden, R. Berthilsson, and G. Sparr, An iterative factorization method for

projective structure and motion from image sequences, Image Vis. Comput., 17-
13 (1999), 981–991.

6. K. Kanatani, Latest progress of 3-D reconstruction from multiple camera images,
in: X. P. Guo (Ed.), Robotics Research Trends, Nova Science, Hauppauge, NY,
U.S.A., 2008, pp. 33–75.

7. S. Mahamud and M. Hebert, Iterative projective reconstruction from multiple
views, Proc. IEEE Conf. Comput. Vis. Patt. Recog., Hinton Head Island, SC,
U.S.A., June 2000, Vol. 2, pp. 2430–2437.

8. M. Pollefeys, R. Koch, and L. Van Gool, Self-calibration and metric reconstruction
in spite of varying and unknown internal camera parameters, Int. J. Comput. Vis.,
32-1 (1999), 7–25.

9. P. Sturm and B. Triggs, A factorization based algorithm for multi-image projective
structure and motion, Proc. 4th Euro. Conf. Comput. Vis., Cambridge, U.K., April
1996, Vol. 2, pp. 709–720.

10. C. Tomasi and T. Kanade, Detection and Tracking of Point Features, CMU Tech.
Rept. CMU-CS-91132, 1991; http://vision.stanford.edu/~birch/klt/.

11. C. Tomasi and T. Kanade, Shape and motion from image streams under orthog-
raphy: A factorization method, Int. J. Comput. Vis., 9-2 (1992), 137–154.

12. B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. Fitzgibbon, Bundle
adjustment—A modern synthesis, B. Triggs, A. Zisserman, and R. Szeliski (Eds.),
Vision Algorithms: Theory and Practice, Springer, Berlin, 2000, pp. 298–375.

