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Abstract

Structure from motion (SfM) aims on estimating 3D structure from 2D image sequences.

This paper

focuses on a stability analysis and studies the error propagation of image noise. To stabilize SfM, we
further present two optimization schemes by using a-priori knowledge of the scene.
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1 Introduction

Structure from motion (SfM) is a research topic in
computer vision and photogrammetry, with appli-
cations in areas such as e-commerce, real estate,
games and special effects. It aims at recovering 3D
(shape) models of (usually rigid) objects from an
(uncalibrated) sequence or set of 2D images.

The original approach [5] of structure from motion
consists of the following steps: (1) extract corre-
sponding points from pairs of images, (2) compute
the fundamental matrix, (3) specify the projection
matrix, (4) generate a dense depth map, and (5)
build a 3D model. A brief introduction of some of
those steps will be presented in Section 2.

Errors are inevitable to every procedure, and it
is also true for SfM. We may expect computation
errors appearing in each step. Errors caused by
noise (such as sensor measuring errors) are limited
to Step 1, and numerical errors may appear in all
steps.
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Figure 1: Basic steps of SfM.
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To analyze the influence of noise, we perform SfM
in a way as shown in Figure 1. At Step 1, Gaussian
noise is introduced into coordinates of detected
correspondences. At Step 2, three different meth-
ods are compared to specify which one is the best
to compute the fundamental matrix. At Step 3,
a quantitative error analysis is performed. Addi-
tionally, to improve the stabilization of SfM, two
optimizations are proposed using information from
the 3D scene; see Section 3. Section 4 presents
experimental results, and Section 5 concludes the
paper with a brief summary.

2 Modules of SfM

This section gives a brief introduction for some of
the SfM steps (and related algorithms). For ex-
tracting correspondent points, we recall a method
proposed in [16]. Then, three methods for comput-
ing the fundamental matrix are briefly introduced.
To specify a projection matrix from a fundamental
matrix, we apply two common methods based on
[3, 4]. In this step we also use the knowledge of in-
trinsic camera parameters, which can be obtained
through Tsai calibration [12]; this calibration is
performed before or after taking the pictures for
the used camera. It allows to specify the effective
focal length f, the size factors k, and k, of CCD
cells (for calculating the physical size of pixels),
and the coordinates ug and vg of the principal point
(i.e., center point) in the image plane.

2.1 Corresponding points

We need a number of at least seven pairs of cor-
responding points to determine the geometric re-
lationship between two images, caused by viewing
the same object from different view points. One
way to extract those points from a pair of images
is as follows [16]:



(1) extract candidate points by using the Harris
corner detector [2], (2) utilize a correlation
technique to find matching pairs, and (3) remove
outliers by using a LMedS (i.e., least-median-of-
squares) method.

Due to the poor performance of the Harris cor-
ner detector on specular objects, this method is
normally not suitable for objects with smooth sur-
faces.

2.2 Fundamental matrix

A fundamental matrix is an algebraic representa-
tion of epipolar geometry [15]. It can be calcu-
lated if we have at least seven correspondences (i.e.,
pairs of corresponding points), for example using
linear methods (such as the 8-Point Algorithm of
[8]) or nonlinear methods (such as the RANSAC
Algorithm of [1], or the LMedS Algorithm of [16]).

In the case of a linear method, the fundamental
matrix is specified through solving an overde-
termined system of linear equations utilizing
the given correspondences. In the case of a
nonlinear method, subsets (at least seven) of
correspondences are chosen randomly and used
to compute candidate fundamental matrices, and
then the best is selected, which causes the smallest
error for all the detected correspondences.

According to our experiments, linear methods have
a more time efficient and provide reasonably good
results for large (say more than 13) numbers of cor-
respondences. Nonlinear methods are more time
consuming, but less sensible to noise, especially if
correspondences also contain outliers.

2.3 Projection matrix

We express a projection matrix P as follows [3]:
P = K[R| —RT]

where K is a matrix of the intrinsic camera pa-
rameters, and R and T are the rotation matrix
and translation vector (the extrinsic camera pa-
rameters). Since the intrinsic parameters are spec-
ified by calibration, relative rotation and transla-
tion can be successfully extracted from the funda-
mental matrix F. When recovering the projection
matrices in reference to the first camera position,
the projection matrix of the first camera position
is given as P, = Kj[I | 0], and the projection
matrix of the second camera position is given as
P, = K»3[R | —RT).

The method proposed by Hartley and Zisserman
for computing rotation matrix R and translation
vector T' (from the essential matrix F) is as follows:

1. Compute E by using E = KI' FK;, where

fku 0 ()
Kz = 0 fkv Vo
0 0 1

(note: K7 = K if we use the same camera at
view points 1 and 2),

2. Perform a singular value decomposition
(SVD) of E by following the template
E = Udiag(1,1,0)VT,

3. Compute R and T (for the second view point),
where we have two options, namely

Ry =UWVT Ry =UWTVT

T1 = Uus T2 = —Uus

where us is the third column of U and
-1
0
0

0 0
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Another method for computing R and T from E
(also only using elementary matrix operations) is
given in [4], which leads to almost identical results
as the method by Hartley and Zisserman.

2.4 Dense depth map

At this point, the given correspondences allow only
a few points to be reconstructed in 3D. A satis-
factory 3D model of a pictured object requires a
dense map of correspondences. The epipolar con-
straint (as calculated above) allows that correspon-
dence search can be restricted to one-dimensional
epipolar lines, it supports that images are at first
rectified following the method in [10], and that
correspondence matching is then done by searching
along a corresponding scan line in the rectified im-
age. We also require a recovered base line between
both camera positions to calculate a dense depth
map.

3 Optimization with Prior Knowledge

Since computations of fundamental and projection
matrix are sensitive to noise, it is necessary to
apply a method for reducing the effect of noise (to
stabilize SfM). We utilize information about the
given 3D scene, such as knowledge about collinear-
ity or coplanarity. In practice, this knowledge is
information of a set of points which lie in a line, e.g.
an edge of a building, or a plane, e.g. a tabletop.



3.1 Knowledge about collinearity

It is not hard to detect collinear points on man-
made objects, such as buildings or furniture. As-
suming ideal central projection (i.e., no lens distor-
tion or noise), then collinear points in object space
are mapped onto one line in the image plane. We
assume that lens distortions can be ignored. Lin-
earizing points which are supposed to be collinear
can then be seen as a way to remove noise.

The approximating line for a set of ”noisy collinear
points” is identified by least-square line fitting [7]
(minimizing perpendicular offsets). Assume a set
of points P = {(z;,y;)[i = 1,...,n} which de-
termines a line I(a,3,7) = az + By + v. The
coefficients «, 8 and ~ are calculated as follows:

— Hay
o =
\/N%y + (A" = pae)?

_ )\* — Mz
\/ﬂ’g:y + (A = gz )?

and v = —(aZ + (y) , where

N 1
AT = i(ﬂmz + fhyy — \/(sz - Myy)z + 4lumy)

1
Hxz = n_1 Z($z —f)Q

1 —\2
:uyy—n_lz(yz_y)

i=1

> (=7~ )

1

n—1

1 n 1 n
5252% and @zﬁ;yi
1= 1=

Points’ positions are modified through perpendic-
ular projection onto the calculated line.

Hxy =

3.2 Knowledge about coplanarity

Coplanar points can be expected on rigid struc-
tures such as on walls or on a tabletop. For a set
of points, all incident with the same plane, there is
a 3 x 3 matrix H called homography which defines
a perspective transform of those points into the
image plane [11].

3.2.1 Homography

Consider we have an image sequence (generalizing
the two-image situation from before) and py; is the
projection of 3D point P; into the kth image, i.e.
P; is related to py; as follows:

Pri = Wi K R (P — Tk,) (1)

where wy; is an unknown scale factor, K denotes
the intrinsic matrix (for the used camera), and Ry,
and T}, are the rotation matrix and translation vec-
tor. Following Equation (1), P; can be expressed
as follows:

P =wi Ry K o + T (2)

Similarly, for point p;; lying on the Ith image, we
have
Pi=wy RO s+ T (3)
From Equations (2) and (3), we get
pri = wei K Re(wp; "Ry K py + T — Ti) - (4)

With Ry = RiR; ' we define HY? = KR K, .
We also have epipole ex; = KRy (T) — T)). Equa-
tion (4) can then be simplified to

Pri = wiiwy;  (Hes pii + wiiekr) (5)

Hpy is what we call the homography which maps
points at infinity (w;; = 0) from image [ to image
k. Consider a point P; on plane n”P; — d = 0.
Then, from Equation (3), we have

A'P —d=n"w, "Ry 'K \p + ATy —d = 0

Then we have
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what can be rewritten as follows:

wi = d; "W R K py
where dl_l = d—n"T is the distance from the cam-
era center (principal point) of the Ith image to the
plane (m,d). Substituting wj; into Equation (5),
finally we have
pri = wrawy, (HEY +dy ten By VK Ypu
Let
H = wywy; "(HY +d len” RV

This means: points lying in the same plane have
identical H which can be utilized as coplanarity
constraint; see [11].

3.2.2 Coplanarity optimization

Coplanar points satisfy the relation described by
homography. We use this relation for modifying
“noisy coplanar points,” using the equation

DPri = Hyipi

Here, Hy; is the homography between kth and Ith
image in the sequence, and pg;, p;; are projections
of point P; on the kth and /th image, respectively.



4 Experiments and Analysis

This section shows at first experiments of the per-
formance of different methods for computing the
fundamental matrix, and second the performance
of the remaining SfM steps. Finally we evaluate
effect of the optimizations mentioned in Section 3.

4.1 Computation of fundamental matrix

Three algorithms (8-Point, RANSAC and LMedS)
are compared with each other in this section. To
specify the most stable one in presence of noise,
Gaussian Noise (with mean 0 and deviation § =
1 pixel) and one outlier are propagated to given
correspondences. Performances of the three algo-
rithms are characterized in Figure 2: the 8-Point
Algorithm is more sensitive than the other two.

4.2 Optimizations

To test the effect of the optimizations mentioned
in the previous section, the results of splitting es-
sential matrices (rotation matrices and translation
vectors) are compared to each other. Two im-
ages of a calibration object are used as test images
(shown in Figure 3). The data got from calibration
(intrinsic parameters and extrinsic parameters of
camera) are used as the ground truth.

The roll angle «, pitch angle 5 and yaw angle ~y are
used to compare the rotation matrices in a quanti-
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Figure 2: Performance of three algorithms in

presence of noise.

Figure 3: The first (left) and second (right)
candidate images.

tative manner. These angles can be computed from
a rotation matrix R by the following equations [9]:

o = atan2(Gs, Gty)
J— 732 —T31

b= wtan2(Gd, i)

v = atan2(\/r3; + 135,733)

where 7;; is the element of R at ith row and jth
column, and

atan(%) (x> 0)
ZL(m—atan(] £ |)) (z<0)
atan2(y, ) = - r
W= (v #0,2=0)
undefined (y=0,2=0)

Since splitting the essential matrix only results in
a translation vector up to a scale factor [3], all
translation vectors (including the ground true one)
are transformed into a normalized vector (length
equal to one unit) to compare with each other in a
quantitative manner.

The comparison of rotation matrices and
translation vectors are shown in Figure 4
and Figure 5. The errors are the mean errors
of ten iterations when different number of
correspondences are given. The noise propagated
is Gaussian noise (with mean 0 and deviation
0 = 1 pixel). The method used to compute the
fundamental matrix is the 8-Point Algorithm,
which is more sensitive to noise than RANSAC
and LMedS Algorithm. The method of Hartley
and Zisserman is used to split the essential matrix.

According to the results shown in Figure 4 and
Figure 5, the coplanarity knowledge gives a bet-
ter optimization than collinearity knowledge. One
possible reason is that the collinearity optimization
is performed on uncalibrated images, in which the
true correlation of collinear points are not strictly
lying in a straight line.

For arbitrary images, the effect of optimizations
can be seen from Figure 6 through looking at rela-
tive positions of epipolar lines computed from dif-
ferent data sets. It shows that the two optimization
strategies bring positive effects on reducing the in-
fluence of noise, and the coplanarity optimization
performs better than the collinearity optimization.

Figure 7 shows an example of the reconstructed
CITR-building, located at Tamaki campus in
Auckland.

5 Summary

Modules relating to structure from motion have
been discussed in this paper. According to exper-
iments, structure from motion is sensitive to noise
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Figure 4: Errors at rotation matrices. The first
diagram shows the errors from non-noisy data (re-
garded as ground truth); the second diagram shows
the errors from noisy data; the third and fourth
diagram indicate the errors from the noisy data
after being respectively optimized with collinearity
and coplanarity knowledge.
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Figure 5: Errors at translation vectors. The first
diagram shows the errors from non-noisy data (re-
garded as ground truth); the second diagram shows
the errors from noisy data; the third and fourth
diagram indicate the errors from the noisy data
after being respectively optimized with collinearity
and coplanarity knowledge.



Figure 6: Epipolar lines result from different data
sets: green (dashed) lines from data without gener-
ated noise, the red (straight ) lines from noisy data,
the blue (dash-dotted) lines or yellow (dotted) lines
from noisy data and the use of collinearity or
coplanarity knowledge, respectively.

and it is necessary to improve its stability. Two
optimizations, using collinearity and coplanarity
knowledge, have been proposed, and the relating
experiments show that the two proposed optimiza-
tions, especial the coplanarity one, bring positive
effects on reducing influences of noise.

Acknowledgments: The authors thank Daniel
Grest and Kevin Koeser from the University of Kiel
for the BIAS-Library and useful hints.

Figure 7: Example: reconstructed CITR-building.
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