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Abstract. In recent years, the classification task of building facade images re-
ceives a great deal of attention in the photogrammetry community. In this pa-
per, we present an approach for regionwise classification using an efficient ran-
domized decision forest classifier and local features. A conditional random field
is then introduced to enforce spatial consistency between neighboring regions.
Experimental results are provided to illustrate the performance of the proposed
methods using image from eTRIMS database, where our focus is the object classes
building, car, door, pavement, road, sky, vegetation, and window.

Keywords: Classification, conditional random field, random decision forest, seg-
mentation, facade image

1 INTRODUCTION

This paper presents an investigation into the semantic scene interpretation in the context
of terrestrial man-made scenes. Our goal is the interpretation of the scene contained in
an image as a collection of meaningful regions. The result of such an interpretation
could be a rich image description useful for 3D city models of high level of detail,
which are mainly used for visualization purposes, by thematic attributes to eventually
obtain truly 3D geoinformation systems for complete cities. In this paper we focus on
the problem of multi-class classification of building facade image regions.

Facade classification is the task of estimating the position and size of various struc-
tural (e.g. window, door) and non-structural elements (e.g. sky, road, building) in a
given image (Fröhlich et al., 2010). Despite the substantial improvements during the
past decade, the classification task remains a challenging problem, which receives a
great deal of attention in the photogrammetry community (Rottensteiner et al., 2007;
Korč and Förstner, 2008; Fröhlich et al., 2010; Kluckner and Bischof, 2010; Teboul
et al., 2010).

Recently, an increasingly popular way to solve various image interpretation prob-
lems like object segmentation, stereo and single view reconstruction is to formulate
them using image regions obtained from unsupervised segmentation algorithms. These
methods are inspired from the observation that pixels constituting a particular region
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often have the similar property. For instance, they may belong to the same object. This
approach has the benefit that higher order features based on all the pixels constituting
the region can be computed and used for classification. Further, it is also much faster as
inference now only needs to be performed over a small number of regions rather than
all the pixels in the image.

An image dataset showing urban buildings in their environment has been made pub-
lic by Korč and Förstner (2009), which is called eTRIMS dataset. It allows benchmark-
ing of facade image classification. Most of the images of this data set show facades in
Switzerland and Germany. Regarding terrestrial facade images in this dataset, the most
dominant objects are building, window, vegetation, and sky.

In this work, randomized decision forest (RDF) (Breiman, 2001) is adopted as the
classifier, which gives good classification results on building facade images. Because
of its rather local nature, a conditional random field (CRF) (Lafferty et al., 2001) is
often introduced to enforce spatial consistency. We show that CRF classification results
give average performance of 65.8% accurarcy on eTRIMS 8-class dataset (Korč and
Förstner, 2009). The remainder of the paper is organized as follow. Sec. 2 reviews some
existing methods for building facade image classification. RDF classifier for performing
image classification, and refinement with a CRF are described in Sec. 3. In Sec. 4, we
show our results of RDF and CRF with respect to the classification of facade images.
We finally conclude with a brief summary in Sec. 5.

2 RELATED WORKS

Previous works on building facade classification mostly regard the facade classification
problem as multiple object detection tasks. Building facade detection is a very active
research area in photogrammtery and computer vision. Drauschke and Förstner (2008)
present a feature selection scheme with Adaboost for detecting buildings and building
parts, where some of these features are used for classification in this paper. Graphical
models are often used for integrating further information about the content of the whole
scene in recent approaches (Kumar and Hebert, 2003; Verbeek and Triggs, 2007). In
another paradigm, the bag of words, objects are detected by the evaluation of histograms
of basic image features from a dictionary (Sivic et al., 2005). However, both approaches
have not been tested with high resolution building images. Furthermore, the bag of
words approaches have not applied to multifarious categories as building, and it is rather
slow and the most time consuming part of the whole system.

Support vector machines are widely considered as a good classifier. Schnitzspan
et al. (2008) propose hierarchical support vector random fields that SVM is used as a
classifier for unary potentials in conditional random field framework. While the training
and cross-validation steps in support vector machines are time consuming, randomized
decision forest (RDF) (Breiman, 2001) is introduced to significantly speed up the learn-
ing and prediction process. Existing work has shown the power of a RDF as a useful
classifier (Bosch et al., 2007; Lepetit et al., 2005; Maree et al., 2005). The use of a
RDF for semantic segmentation is investigated in Shotton et al. (2008); Dumont et al.
(2009); Fröhlich et al. (2010). These approaches utilize simple color histogram features
or pixel differences. Multi-class facade segmentation by combining a machine learn-
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ing approach with procedural modeling as a shape prior is presented by Teboul et al.
(2010). Generic shape grammars are constrained so as to express buildings only. Ran-
domized forests are used to determine a relationship between the semantic elements of
the grammar and the observed image support. Drauschke and Mayer (2010) also use
random forest as one of the classifiers to evaluate the potential of texture filter banks for
the pixelwise classification of facade images in eTRIMS dataset. Fröhlich et al. (2010)
combine an RDF and local features for pixelwise labeling of facade images. Compared
to Fröhlich et al. (2010), we derive the RDF classification on the image region level,
rather than pixel level, and use a CRF to refine the classification results, where we in-
corporate location potentials and pairwise potentials in the CRF model. Other related
works using the eTRIMS dataset concentrate on reconstructing the facade with gram-
mar (Ripperda and Brenner, 2009) or detection of structural elements (e.g. windows
and balconies (Wenzel and Förstner, 2008)), while we focus on multi-class image clas-
sification.

3 CLASSIFICATION

3.1 Randomized Decision Forest

We take randomized decision forest (RDF) (Breiman, 2001) as the classifier which
operates on the regions defined by some unsupervised segmentation methods. In order
to train the classifier, each region is assigned the most frequent class label it contains.
Then a RDF is trained on the labeled data for each of the object classes. As illustrated in
Fig. 1, a RDF is an ensemble classifier that consists of T decision trees (Shotton et al.
(2008)). According to a decision tree learning algorithm, a decision tree recursively
splits left or right down the tree to a leaf node. We use the extremely randomized trees
(Geurts et al. (2006)) as learning algorithm. A feature vector di of image region i is
classified by going down each tree. This process gives a class distribution at the leaf
nodes and also a path for each tree. The class distributions P (xi | di) is obtained by
averaging the class distribution over the leaf nodes for all T trees.

We now describe how the features are constructed from low-level descriptors. For
each region, we compute an 178-dimensional feature vector, first incorporating region
area and perimeter, its compactness and its aspect ratio. For representing spectral in-
formation of the region, we use 9 color features as Barnard et al. (2003): the mean and
the standard deviation of the RGB and the HSV color spaces. Texture features derived
from the Walsh transform (Petrou and Bosdogianni, 1999; Lazaridis and Petrou, 2006)
are also used. Additionally we use mean SIFT descriptors (Lowe, 2004) of the image
region. SIFT descriptors are extracted for each pixel of the region at a fixed scale and
orientation, which is practically the same as the HOG descriptor (Dalal and Triggs,
2005), using the fast SIFT framework in Vedaldi and Fulkerson (2008). The extracted
descriptors are then averaged into one l1-normalized descriptor vector for each region.
Other features are derived from generalization of the region’s border and represent par-
allelity or orthogonality of the border segments.
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Fig. 1. Decision forest. A forest consists of T decision trees. A feature vector is classified by
descending each tree. This gives, for each tree, a path from root to leaf, and a class distribution
at the leaf. As an illustration, we highlight the root to leaf paths (yellow) and class distributions
(red) for one input feature vector. (Figure courtesy by Jamie Shotton (Shotton et al., 2008).)

3.2 Refinement with a CRF

In order to enforce spatial consistency between neighboring regions, we must introduce
constraints that allow us to reduce misclassification that occurs near the boundaries of
image regions. Conditional random fields provide a natural way to incorporate such
constraints by including them in the pairwise potentials of the model.

Given a random field X defined over a graph H = (V, E), the complete model for
determining the optimal labeling x = {xi} has a distribution of the Gibbs form

P (x | d) = 1

Z
exp (−E(x | d)) (1)

with the energy function defined as

E(x | d) =
∑
i∈V

E1(xi) + α
∑

{i,j}∈N

E2(xi, xj) (2)

where α is the weighting coefficient in the model, and Z is the normalization factor. The
set V is the set of nodes in the complete graph. The set N is the set of pairs collecting
neighboring.E1 is the unary potential, which represents relationships between variables
and local observed data. E2 is the pairwise potential, which represents relationships
between variables of neighboring nodes.

The graphical model is illustrated in Fig. 2. Nodes connection and numbers corre-
spond to segmentation of a building facade image. The blue edges between the nodes
represent the neighborhoods.

The local unary potentials E1 independently predict the label xi based on the image
d:

E1(xi) = − logP (xi | d) (3)
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(a) Original image (b) CRF construction

Fig. 2. Illustration of the CRF model architecture. Nodes connection and numbers correspond to
segmented regions of a building facade image.

The label distribution P (xi | d) is usually calculated by using a classifier. The label dis-
tribution defined directly by the probability outputs provided by RDF for each region.
The classifier which results from this is very specific. It finds regions which resem-
ble regions that were seen in the training samples without considering the neighboring
regions.

Based on the fact that RDF classifier does not take class label location information
explicitly, we incorporate location potentials (similar to (Shotton et al., 2006)) in unary
potentials. The location potential− logQ(xi | d) takes the form of a look-up table with
an entry for each class and region center location, where

Q(xi | d) =
(
Nxi ,̂i

+ 1

Nî + 1

)2

The index î is the normalized version of the region index i. Nxi ,̂i
is the number of re-

gions of class xi at normalized location within certain neighborhood in î, and Nî is the
total number of regions at location in î. The location potentials capture the dependence
of the class label on the rough location of the region in the image. Here, we use part of
annotation images in 8-class eTRIMS Database (Korč and Förstner, 2009) to learn the
location potentials, but ensure no overlap between these images and testing images in
the experimental part. Some learned location potentials are illustrated in Fig. 3. There-
fore, the unary potentials E1 is written as

E1(xi) = − logP (xi | d)− logQ(xi | d) (4)

The pairwise potentials E2 describe category compatibility between neighboring
labels xi and xj given the image d, which take the form

E2(xi, xj) =
1 + 4 exp(−2cij)
0.5(Ni +Nj)

δ(xi 6= xj) (5)



6 Michael Ying Yang

where cij is the norm of the color difference between regions in the LUV color space.
Ni is the number of regions neighbored to region i, and Nj is the number of regions
neighbored to j. The potentials E2 are scaled by Ni and Nj to compensate for the
irregularity of the graph H. We refer the reader to Shotton et al. (2006); Gould et al.
(2008) for more details about designing pairwise potentials.

(a) building (b) road

(c) sky (d) vegetation

Fig. 3. Example location potentials. Sky tends to occur at the top part of images, while road tends
to occur at the bottom part of images, and building tends to occur in the middle part of images.
Here, the dark blue area indicates the most likely locations of one class, while the dark red area
indicates the most unlikely locations.

3.3 Learning and Inference

The weighting parameter α, represents the tradeoff between pairwise regularization and
the confidence in unary potentials, is the model parameter that should be learned. We
estimate α by cross validation on the training data. Once the model has been learned,
inference is carried out with the multi-label graph optimization library of (Boykov
et al., 2001; Kolmogorov and Zabih, 2004; Boykov and Kolmogorov, 2004) using α-
expansion. Since the CRF is defined on the graph of regions, inference is very efficient,
taking less than half a second per image.

4 EXPERIMENTAL RESULTS

We conduct experiments to evaluate the performance of the proposed model on the the
8-class eTRIMS Database (Korč and Förstner, 2009). In the experiments, we take the
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ground-truth label of a region to be the majority vote of the ground-truth pixel labels.
We randomly divide the images into training and test data sets.

4.1 eTRIMS Database

We start with the eTRIMS 8-class Database which consists of 60 annotated building
facade images, labeled with 8 classes: building, car, door, pavement, road, sky, vegeta-
tion, window. The ground-truth labeling is approximate (with foreground labels often
overlapping background objects).

We segment the facade images using mean shift algorithm (Comaniciu and Meer,
2002), tuned to give approximately 480 regions per image. In all 60 images, we extract
around 29 600 regions. We have following statistics. Compared to the ground-truth
labeling, almost 33% of all the segmented regions get the classlabel building. 25% of
all regions get the classlabel window. These statistics are very comprehensive, because
facade images typically show buildings typically contain many windows. Furthermore,
19% of the regions get the classlabel vegetation, and 2% belong to sky, and the last 21%
of the regions are spread over most of other classes. We randomly divide the images into
a training set with 40 images and a testing set with 20 images.

4.2 RDF Classification Results

We take the RDF classifier, run experiments 5 times, and obtain overall averaging classi-
fication accuracy 58.8%. The number of decision trees is chosen as T = 250. Random
chance would give 1/8 = 12.5%, and thus RDF results are about 5 times better than
chance. In the whole paper, accuracy values are computed as the percentage of image
pixels assigned to the correct class label, ignoring pixels labeled as void in the ground
truth. Fig. 4 Left shows the classification results over all 8 classes. The classification
accuracy with respect to numbers of decision trees T for training are shown in Fig. 4
Right. While increasing the number of decision trees, the classification accuracy also
increases. After 250 iteration, the accuracy converges. So we choose T = 250 for per-
forming experiments above.

Fig. 4. Left: accuracy of each class of RDF classifier. The horizontal-axis reads building, car,
door, pavement, road, sky, vegetation, window, while the vertical-axis reads [0, 100]. Right: clas-
sification accuracy with respect to numbers of decision trees for training. The horizontal-axis
reads [0, 500], while the vertical-axis reads [40, 60].
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Fig. 5 presents some result images of RDF method. The black regions in all the re-
sult images and ground truth images correspond to background. The quality inspection
of the results in Fig. 5 shows that RDF classifier yields fair results. However, there ex-
ists some misclassification for each class. For example, the incorrect results at windows
are often due to the reflectance of vegetation and sky in the window panes. Most sky
regions are classified correctly. However, sky region is assigned label car in one image
(last image in Fig. 5).

Fig. 5. Example images of eTRIMS database and classification results based on a randomized
decision forest. (For each image triplet, left: test image, middle: result, right: ground truth.)

4.3 CRF Refinement Results

We run experiments 5 times, and obtain overall averaging classification accuracy 65.8%
by applying CRF to the whole test set. For comparison, the RDF classifier alone gives
an overall accuracy of 58.8%.Therefore, the location, and pairwise potentials increase
the accuracy by 7%. For correct recovery of most sky regions, the location potentials
increase the accuracy by 3%. This seemingly small numerical improvement corresponds
to a large perceptual improvement (cf. Fig. 6). The weighting parameter, learned by
cross validation on the training data, is α = 0.8. Table 1 shows the confusion matrix.

Qualitative results of CRF on the eTRIMS dataset are presented in Fig. 6. The qual-
ity inspection of the results in these images shows that CRF yields good results. The
greatest accuracies are for classes which have low visual variability and many training
examples (such as window, vegetation, building, and sky) whilst the lowest accuracies
are for classes with high visual variability or few training examples (for example door,
car, and pavement). We expect more training data and the use of features with better
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lighting invariance properties will improve the classification accuracy. Objects such as
car, door, pavement, and window are sometimes incorrectly classified as building, due
to the dominant presence of building in the image. This kind of problem may be re-
solved by some detection schemes. For example, detecting windows, cars, and doors
should resolve some of such ambiguities. Furthermore, 36% of pavement is misclassi-
fied as road, and 44% of road is misclassified as pavement. Objects, such as pavement
and road, can be confused with each other. This effect is partially attributable to inac-
curacies in the manual ground truth labeling, where pixels are often mislabeled near
object boundaries.

Fig. 6. Qualitative classification results of CRF on the eTRIMS database. (For each image triplet,
left: RDF classification result, middle: CRF refinement result, right: ground truth.)

5 CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate an approach to regionwise classification of building fa-
cade images based on a randomized decision forest (RDF) and local features. In our
experiments on eTRIMS dataset (Korč and Förstner, 2009), we have shown that this
approach produces fair classification results. When we refine the classification with a
conditional random field (CRF), which penalizes pairs of regions that are very different
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@
@@Pr
Tr

b c d p r s v w

b 71 2 1 1 1 2 10 12
c 12 35 0 12 11 0 30 0
d 42 0 16 1 6 0 8 27
p 11 15 0 22 36 0 14 2
r 4 8 0 44 35 0 9 0
s 13 0 0 0 0 78 8 1
v 18 5 2 1 1 0 66 7
w 19 1 1 0 0 1 3 75

Table 1. Pixelwise accuracy of image classification using CRF on the eTRIMS 8-class database.
The confusion matrix shows the classification accuracy for each class (rows) and is row-
normalized to sum to 100%. Row labels indicate the true class (Tr), and column labels the pre-
dicted class (Pr). (b = building,c = car,d = door, p = pavement,r = road,s = sky,v = vegetation,w
= window.)

in color, we consistently improve both our quantitative and especially our qualitative
results.

Since neighboring regions in facade images are not independent from each other,
CRF models these dependencies directly by introducing pairwise potentials. However,
standard CRF works on a local level and long range dependencies are not addressed
explicitly in the CRF. Our future work will try to set up a hierarchical model to integrate
neighborhood and partonomy relations in a unified CRF model. A similar concept has
been raised in Yang et al. (2010), where the model is denoted as hierarchical conditional
random field (HCRF).
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