

Analysis of Affine Motion Compensated Prediction and its Application in Aerial Video Coding

Holger Meuel

Institut für Informationsverarbeitung Leibniz Universität Hannover

August 5th, 2019

Video is everywhere!

Digital television: DVB (T/T2, S/S2, C/C2)

Internet video

NETFLIX

Video on demand

Mobile video

Aerial video

Surveillance video

The Bit Rate Problem

- Data rate of one full HD sequence (1920×1080, 4:2:0): 622 Mbit/s
- More data rate needed for ...
 - Higher resolutions, 4K, 8K, HDR,
 - Multi-view video, e. g. 3D, 360°, ...
- For comparison:
 - ► Capacity of one Blu-ray (dual layer): ≈ 10 min video (HD)
 - Current broadband internet (DSL/ADSL/VDSL): 16–100 Mbit/s
 - Current mobile network (LTE Advanced): 500–1200 Mbit/s (shared!)

No economic storage and transmission of uncompressed video data!

Hybrid Video Coding for Data Compression

- Redundancy removal:
 - 1. motion-compensated prediction
 - 2. entropy coding
- Irrelevance removal: transform & quantization

Bit rates of compressed HD sequence \Rightarrow AVC: 10–12 $^{Mbi \Downarrow s}$ / HEVC: 5–6 $^{Mbi \Downarrow s}$

Motion compensated prediction: blocks are predicted from similar image content

Motivation

- Motion compensated prediction (MCP) as one key element in hybrid video coding
- High dependency between accuracy of motion estimation and prediction error
- Inaccurate motion estimation
 - \Rightarrow High prediction error
 - \Rightarrow High entropy
 - \Rightarrow High bit rate

Aim of thesis:

Modeling of minimum required bit rate for encoding the prediction error as a function of the motion estimation accuracy using an **affine motion model**

Outline

Efficiency Analysis of Affine Motion Compensated Prediction

Efficiency Analysis of Simplified Affine Motion Compensated Prediction

Experimental Results

Conclusion

Outline

Efficiency Analysis of Affine Motion Compensated Prediction

Efficiency Analysis of Simplified Affine Motion Compensated Prediction

Experimental Results

Conclusion

Overview: Bit Rate Derivation for Affine Estimation Errors

- Modeling of power spectral density (PSD) of signal
- Modeling of probability density function (pdf) p(Δx',Δy') of displacement estimation error
- Derivation of PSD_e of displacement estimation error¹
- Application of rate-distortion theory² ⇒ bit rate

¹Girod, "Efficiency of MoComp. Pred. for Hybrid Cod. of Video Seq.", Journ. on Sel. Areas in Comm., 1987 ²Berger, "Rate Distortion Theory", Prentice-Hall, 1971

Power Spectral Density (PSD) of the Signal

- Assumptions for video signal³
 - Isotropic autocorrelation function (ACF)
 - Exponentially decaying ACF
- Fitting of exponential parameter by measurements
 - JCT-VC test sequences
 - Aerial sequences
- Power spectral density PSDs of video signal

³O'Neal et al., "Coding Isotropic Images", IEEE Transact. on Inform. Theory, 23(6):697–707, 1977

Affine Motion and Error Model

- Define affine motion model
- Derive errors from inaccurate affine motion estimation

Affine Motion Model

$$x' = a_{11} \cdot x + a_{12} \cdot y + a_{13}$$

 $y' = a_{21} \cdot x + a_{22} \cdot y + a_{23}$

- a₁₁, a₁₂, a₂₁, a₂₂ non-translational parameters (rotation, scaling, shearing)
- a₁₃ and a₂₃ translational parameters

Affine Motion Estimation

Perfect affine motion:

$$x' = a_{11} \cdot x + a_{12} \cdot y + a_{13}$$

 $y' = a_{21} \cdot x + a_{22} \cdot y + a_{23}$

 Inaccuracies introduced by affine motion parameter estimation (indicated by ²)

$$\Delta x' = \hat{x}' - x' = \underbrace{(\hat{a}_{11} - a_{11})}_{e_{11}} \cdot x + \underbrace{(\hat{a}_{12} - a_{12})}_{e_{12}} \cdot y + \underbrace{(\hat{a}_{13} - a_{13})}_{e_{13}}$$

$$\Delta y' = \hat{y}' - y' = \underbrace{(\hat{a}_{21} - a_{21})}_{e_{21}} \cdot x + \underbrace{(\hat{a}_{22} - a_{22})}_{e_{22}} \cdot y + \underbrace{(\hat{a}_{23} - a_{23})}_{e_{23}}$$

Affine Error Model

Displacement estimation error:

$$\Delta x' = e_{11} \cdot x \qquad \qquad + e_{12} \cdot y \qquad \qquad + e_{13}$$

$$\Delta y' = e_{21} \cdot x \qquad \qquad + e_{22} \cdot y \qquad \qquad + e_{23}$$

Conclusions for displacement estimation errors

- $\Delta x'$, $\Delta y'$ can be described by affine model
- $\Delta x', \Delta y'$ depend on location

Power Spectral Density of Error Signal

Input images Statistical modeling of ACF_s displacement estimation 1 F error $D = f(PSD_s, \Theta)$ PSD. PSD_e=f(PSD_s,P) $R = f(PSD_{e}, \Theta)$ Calculation of power Rit rate over spectral density of prediction affine estimat. error variances D error I.F Displacement $p(\Delta x', \Delta y')$ estimation error Non-translat. Translat. Affine estimation errors

Probability Density Function Derivation (pdf)

- Assumption: errors are random variables which follow zero-mean Gaussian distributions
- \Rightarrow Joint pdf for statistically independent errors:

$$p(e_{11},\ldots,e_{23}) = p(e_{11}) \cdot \ldots \cdot p(e_{23})$$

• But wanted: probability density function $p(\Delta x', \Delta y')$ of displacement estimation errors $\Delta x', \Delta y'$

Pdf of Displacement Estimation Error

$$p(\Delta x', \Delta y') = \frac{1}{2\pi\sigma_{\Delta x'}\sigma_{\Delta y'}} \cdot \exp\left(-\frac{\Delta x'^2}{2\sigma_{\Delta x'}^2}\right) \cdot \exp\left(-\frac{\Delta y'^2}{2\sigma_{\Delta y'}^2}\right)$$

with $\sigma_{\Delta x'}^2 = \sigma_{e_{11}}^2 x^2 + \sigma_{e_{12}}^2 y^2 + \sigma_{e_{13}}^2$
and $\sigma_{\Delta y'}^2 = \sigma_{e_{21}}^2 x^2 + \sigma_{e_{22}}^2 y^2 + \sigma_{e_{23}}^2$

Conclusions

- Displacement estimation error pdf is a function of affinity estimation errors
- Pdf of the displacement estimation error is Gaussian distributed
- ► Variances $\sigma^2_{\Delta x'}$ and $\sigma^2_{\Delta y'}$ depend on location (x, y)

Rate-Distortion Theory

- Definition of target distortion D (30 dB SNR)
- ► Variation of generating function ⊖ to achieve predefined distortion D
- One ⊖ value corresponds to one distortion
- ► Calculation of rate *R* using same ⊖ value

Equal location-dependent variances ($\sigma_{e_{11}}^2 = \sigma_{e_{12}}^2 = \sigma_{e_{21}}^2 = \sigma_{e_{22}}^2 = 5 \cdot 10^{-10}$) and equal location-independent, translational variances ($\sigma_{e_{12}}^2 = \sigma_{e_{22}}^2 = 0.0052$)

Minimum Required Bit Rate for Prediction Error Coding

Left axis: location-dependent variances set equal;

right axis: location-independent, translational variances set equal

Holger Meuel meuel@tnt.uni-hannover.de

Outline

Efficiency Analysis of Affine Motion Compensated Prediction

Efficiency Analysis of Simplified Affine Motion Compensated Prediction

Experimental Results

Conclusion

Motion Model

Physically motivated affine motion model:

$$x'_{s} = s \cdot \cos(\theta) \cdot x + s \cdot \sin(\theta) \cdot y + c$$

$$y'_{s} = -s \cdot \sin(\theta) \cdot x + s \cdot \cos(\theta) \cdot y + f$$

- c and f translational parameters
- Non-translational parameters
 - Rotation angle θ
 - Scaling factor s

Simplified Affine Motion Model

Model as used by JVET and in the JEM software⁴:

$$\begin{aligned} x'_{s} &= (a+1) \cdot x &+ b \cdot y &+ c \\ y'_{s} &= -b \cdot x &+ (a+1) \cdot y &+ f \end{aligned}$$

⁴Li et al.: "An Efficient Four-Parameter Affine Motion Model for Video Coding," IEEE Transact. on Circuits and Systems for Video Technology, vol. PP, no. 99, pp. 1–1, 2017

Simplified Affine Motion Estimation

Estimated motion:

$$\hat{x}'_{s} = (\hat{a} + 1) \cdot x + \hat{b} \cdot y + \hat{c} \hat{y}'_{s} = -\hat{b} \cdot x + (\hat{a} + 1) \cdot y + \hat{f}$$

Inaccuracies introduced by simplified affine motion parameter estimation (indicated by ²)

Simplified Affine Error Model

Displacement estimation error:

$$\Delta x'_{s} = e_{a} \cdot x + e_{b} \cdot y + e_{c}$$

$$\Delta y'_{s} = -e_{b} \cdot x + e_{a} \cdot y + e_{f}$$

- Statistically independent error terms
- Statistical modeling of simplified affine estimation errors by their probability density functions (pdfs)

Conclusions for displacement estimation errors

- $\Delta x'_{s}, \Delta y'_{s}$ describable by simplified affine model
- $\Delta x'_{s}, \Delta y'_{s}$ depend on location again
- $\Delta x'_{s}, \Delta y'_{s}$ are interdependent

Pdf of the Displacement Estimation Error

$$p(\Delta x'_{s}, \Delta y'_{s}) = \frac{1}{2\pi\sigma_{\Delta x'_{s}}\sigma_{\Delta y'_{s}}\sqrt{1-\rho^{2}}}$$

$$\cdot \exp\left(-\frac{1}{2(1-\rho^{2})}\left[\frac{\Delta x'^{2}_{s}}{\sigma^{2}_{\Delta x'_{s}}} + \frac{\Delta y'^{2}_{s}}{\sigma^{2}_{\Delta y'_{s}}} - \frac{2\rho \cdot \Delta x'_{s} \cdot \Delta y'_{s}}{\sigma_{\Delta x'_{s}} \cdot \sigma_{\Delta y'_{s}}}\right]\right)$$
with $\sigma^{2}_{\Delta x'_{s}} = M \cdot \sqrt{(\sigma^{2}_{ea}y^{2} + \sigma^{2}_{eb}x^{2} + \sigma^{2}_{eb}) \cdot (1-\rho^{2})}$
 $\sigma^{2}_{\Delta y'_{s}} = M \cdot \sqrt{(\sigma^{2}_{ea}x^{2} + \sigma^{2}_{eb}y^{2} + \sigma^{2}_{ec}) \cdot (1-\rho^{2})}$
 $M = \left(\left(x^{2} + y^{2}\right)^{2}\sigma^{2}_{eb} + y^{2}\sigma^{2}_{ec} + x^{2}\sigma^{2}_{eb}\right)\sigma^{2}_{ea}$
 $\rho = \frac{(\sigma^{2}_{ea}xy - \sigma^{2}_{eb}xy)}{\sqrt{\sigma^{2}_{ea}y^{2} + \sigma^{2}_{eb}x^{2} + \sigma^{2}_{eb}} \cdot \sqrt{\sigma^{2}_{ea}x^{2} + \sigma^{2}_{eb}y^{2} + \sigma^{2}_{ec}}$

- Bivariate zero-mean Gaussian distribution with correlation coefficient ρ
- Variances $\sigma_{\Delta x'_{e}}^{2}$, $\sigma_{\Delta y'_{e}}^{2}$ depend on locations x, y

Efficiency Analysis of Simplified Affine MCP

Minimum Required Bit Rate for Prediction Error Coding

Left axis: location-dependent variances in realistic ratio $\sigma_{e_b}^2 = 2\sigma_{e_a}^2$; right axis: location-independent, translational variances equal $\sigma_{e_c}^2 = \sigma_{e_r}^2$

Comparison between Fully and Simplified Affine Model

- If motion in scene can be covered by both models, i. e. no shearing contained
 - Only 4 instead of 6 parameters for simplified model
 - \Rightarrow Smaller total estimation error
 - ⇒ Slightly smaller bit rates for practical applications

Location-dependent variances in ratio $\sigma_{e_b}^2 \!=\! 2\sigma_{e_a}^2$

Outline

Efficiency Analysis of Affine Motion Compensated Prediction

Efficiency Analysis of Simplified Affine Motion Compensated Prediction

Experimental Results Affine Motion Compensation in General Video Coding Application for Aerial Sequences

Conclusion

Outline

Efficiency Analysis of Affine Motion Compensated Prediction

Efficiency Analysis of Simplified Affine Motion Compensated Prediction

Experimental Results Affine Motion Compensation in General Video Coding Application for Aerial Sequences

Conclusion

Experimental Setup

- Video signal with artificially introduced motion of specific variances
- Most-trivial motion estimation always predicting "no motion"
- ⇒ Introduced motion becomes exactly prediction error

Measured Prediction Error Bit Rates

Holger Meuel meuel@tnt.uni-hannover.de Experimental Results / Affine Motion Compensation in General Video Coding

Comparison between Model and Measurement

- Qualitatively perfect match between theory and measurement
- Slight overestimation of bit rates by model (2.53 vs. 2.507 bit/sample at maximum)
- Distinctive lower plateau in experimental data
- Measurements confirm supremum as predicted by the model

Theory (fully aff.)

Measurement

Experimental Results / Affine Motion Compensation in General Video Coding

Distinct Affine Test Sequences⁵

ShieldsPart, frame 1

ShieldsPart, frame 100

TractorPart, frame 1

TractorPart, frame 100

⁵Li et al., "An Efficient Four-Parameter Affine Motion Model for Video Coding"

Experimental Results / Affine Motion Compensation in General Video Coding

Operational Rate-Distortion Curves

Outline

Efficiency Analysis of Affine Motion Compensated Prediction

Efficiency Analysis of Simplified Affine Motion Compensated Prediction

Experimental Results Affine Motion Compensation in General Video Coding Application for Aerial Sequences

Conclusion

Experimental Results / Application for Aerial Sequences

Low Bit Rate Coding System for Aerial Video Sequences

Idea: Exploit characteristics of aerial planar videos

- I.) Detect region of interest (ROI): new areas
- II.) Detect region of interest (ROI): *moving objects*
- III.) Encode *only* areas containing *new areas* or *moving objects*

Reconstruct non-ROI areas by affine global motion compensation

Experimental Results / Application for Aerial Sequences

Test Sequences (TAVT)

350 m sequence

500 m sequence

1000 m sequence

1500 m sequence

Evaluation of the Aerial Coding System

- Common peak signal-to-noise ratio (PSNR) as quality criterion
- Evaluation in ROI areas only, PSNR pprox 38 dB
- Sequences from TAVT

Experimental Results / Application for Aerial Sequences

Subjective Evaluation of Aerial Coding System

Original

HEVC 150 kbit/s

ROI HEVC 150 kbit/s

(Video comparison @150 kbit/s)

Experimental Results / Application for Aerial Sequences

Subjective Tests of Aerial Video Coding System

Result from 27 test subjects judging *sharpness of details*; test conditions according to ITU-T Rec. P.913

Outline

- Efficiency Analysis of Affine Motion Compensated Prediction
- Efficiency Analysis of Simplified Affine Motion Compensated Prediction
- **Experimental Results**
- Conclusion

Conclusion

Analysis of affine motion compensated prediction

- Modeling of displacement estimation error as function of affine motion estimation accuracy
- Video signal characteristics & rate-distortion theory
- \Rightarrow Minimum required bit rate for prediction error coding
 - Mathematical modeling of bit rate estimation for simplified and fully affine motion compensated prediction in video coding

Low bit rate aerial video coding system

- Exploiting affine global motion in aerial videos
- Encoding of new areas and moving objects only
- Superior quality compared to standardized video codecs

Thank you for your attention.

Holger Meuel meuel@tnt.uni-hannover.de

