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1. Introduction

In the manufacturing world, the role of maintenance
becomes increasingly important. When well performed, it can 
reduce downtime and production costs. In addition, well 
maintained assets guarantee the quality of the goods 
manufactured. An asset can be utilized until its end-of-life
(EOL) is reached. EOL describes the time index at which the 
asset health falls below or degradation raises above a certain 
threshold. The time until EOL is reached is described as 
remaining useful life (RUL). Two well-known maintenance 
methods [1] are reactive maintenance and preventive 
maintenance. With reactive maintenance, an asset is used until 
the end-of-life is reached, allowing maximum utilization of an 
asset. For critical applications, downtime caused by EOL is 
undesirable. On the other hand, an asset is maintained 
periodically based on preventive maintenance to prevent
possible downtime or possible sudden breakdown. Assets 
maintained in this manner are often replaced or maintained 
despite their good condition. This results in under-utilization of 
the asset and higher cost.

A modern approach to Prognostic Health Management
(PHM) is predictive maintenance. It leverages the use of big 
data coming from sensors to analyze the internal condition of 
an asset. When a certain condition is observed, the asset will be 
maintained. Furthermore, remaining useful life (RUL) is 
estimated at every time point, providing information when the 
asset should be ideally maintained. Essentially, predictive 
maintenance maximizes utilization while minimizing
downtime. 

In our case, we focus on predicting the RUL of assets used 
in glass syringe production, specifically in the print screen step 
where a certain layout is printed on top of syringe surface. The 
assets mentioned do not have any sensor attached. Therefore,
direct condition assessment is not possible. We monitor the 
condition of the assets indirectly by assessing the inspection 
image of produced syringes. For high dimensional data, 
inferring the internal condition is a complex task. In addition, 
ground truths or labels describing the degradation or health 
index of the asset at each time point are not always available.

In this paper, we propose Deep Degradation Metric (DDM) 
method that implicitly learns the degradation index by 
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exploiting the property of the end-of-life prediction. Our 
contribution in this work can be summarized as follows:
• Unsupervised RUL prediction on high-dimensional data
• Estimation of a degradation index of an asset by exploiting

the property in the end-of-life prediction.
• Automatic relevant determination of features that play an

important role in determining degradation or health index.

Nomenclature

PHM Prognostic Health Management
EOL    End-of-Life
RUL    Remaining Useful Life
ICM     Indirect Condition Monitoring
DI       Degradation Index
DDM Deep Degradation Metric
k-NN k-Nearest Neighbour
DML Deep Metric Learning
ROI Region of Interest
BCE Binary Cross Entropy
MSE Mean-squared Error
ReLU Rectified Linear Unit

2. Related works

Many works have been done in the field of PHM. Saxena et 
al. [2] describe that unlike any other future behavior 
predictions, EOL prediction has unique properties: a prediction 
threshold exists and the trend is monotonic in general. Si et al. 
[3] described comprehensively models that can be used to 
predict the RUL based on the observed condition, the historical 
data of similar assets or degradation index. 

In the field of computer vision, deep convolutional neural 
networks [4]–[6] have had a great success in solving task such 
as image classification. There are two well-known 
architectures: ResidualNet (ResNet) [4] and EfficientNet [5], 
[6] comprised of predefined blocks such as Basic Block, 
Bottleneck Block and Inverted Residual Bottleneck. This 
simplifies the scaling of the model to a deeper model, achieving 
better performance. Additionally, skip or residual connections 
have been integrated to solve the vanishing gradient problem 
that plagues deep neural network models. Both ResNet and 
EfficientNet belong to the so-called foundation models [7] that
serve as the backbone of other neural networks for various 
tasks.

In PHM or RUL prediction, the features of an assets with 
comparable health index are similar, thus k-Nearest Neighbor 
(k-NN) [8], [9] can be employed to predict the health index
based on the similarity of the features of an asset to the features 
in the database. For high dimensional data such as image, a 
deep neural network can be trained to measure the similarity 
between features of assets. One specific field in deep learning, 
called deep metric learning (DML) [10], [11], attempts to map 
the datapoints or features to an embedding space, where similar 
datapoints are located near each other and dissimilar datapoints
apart from each other. Contrastive Loss [12] pulls together 
similar datapoints while dissimilar datapoints are pushed away 
from each other. On the other hand, Triplet Loss [13] tries both 
at the same time. Given three data, anchor, positive (data with 

similar label) and negative (data with different label), it tries to 
minimize the distance between anchor and positive data while 
maximizing the distance between anchor and negative data.
Unfortunately, labels are required for DML methods and such 
information is expensive to generate and often unavailable in 
manufacturing process. In our work, we extend the DML by 
exploiting special property of RUL prediction. It requires no
ground truths or labels corresponding to internal condition.

3. Method

3.1. Problem scenario

Our goal is to predict the RUL in the absence of ground 
truth. Using the time index directly as the label is not suitable
due to various reasons. First, the initial degradation index of an 
asset after maintenance or replacement are different, even with 
quality control. By using time index as the label, we infer that 
the degradation of all assets is equal at the beginning. Then 
there is another challenge, which is the trend of the degradation 
index. Time index increases linearly from 0 to n where n is the 
time index when the process ends (or when a certain threshold 
is reached). This will result in the assumption that the trend is
linear while in real production the degradation trend is 
unknown.

3.2. Deep Degradation Metric

One property in EOL prediction is particularly interesting
for us. Without maintenance, the condition of an asset degrades 
until it loses a degree of functional capability (including 
complete failure), therefore the trend in EOL prediction is 
monotonic as it goes from healthy condition to degraded 
condition [2]. Based on this property, we design our loss 
function and transform the time index so that we can use it as a
pseudo label.

Assume that for a given asset, the corresponding true health 
index develops over time as shown in Fig. 1. The internal 
condition is unknown to us. Given two data points 𝐴𝐴 and 𝐵𝐵
corresponding to an asset, we can qualitatively assume that the 
health index at time index 𝑡𝑡𝐴𝐴 is lower than at time index 𝑡𝑡𝐵𝐵. We
formulate this problem by predicting the order of two images,
such that given two data points which has the higher time index.
Therefore, we transform our problem into a classification 
problem by transforming the time index:

Fig. 1. Health index of an asset over time. Given two measurement points 
at time index 𝑡𝑡𝐴𝐴 and 𝑡𝑡𝐵𝐵, we can assume the health index at 𝑡𝑡𝐴𝐴 is lower than 
|                                            at time index 𝑡𝑡𝐵𝐵.
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𝑦𝑦𝐴𝐴,𝐵𝐵 ≔ { 0, 𝑖𝑖𝑖𝑖 𝑡𝑡𝐴𝐴 < 𝑡𝑡𝐵𝐵
1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. ( 1 )

𝑦𝑦𝐴𝐴,𝐵𝐵 is the pseudo label for time index 𝑡𝑡𝐴𝐴 and 𝑡𝑡𝐵𝐵. Changing the
order of 𝐴𝐴 and 𝐵𝐵 will result in different value of 𝑦𝑦. The model 
predicts the order by predicting the degradation index 𝑚𝑚𝐴𝐴 and
𝑚𝑚𝐵𝐵 for data points (in this case images) 𝐴𝐴 and 𝐵𝐵, respectively.
The predicted degradation indices are then transformed into 
predicted pseudo label 𝑦̂𝑦𝐴𝐴,𝐵𝐵:

𝑦̂𝑦𝐴𝐴,𝐵𝐵 ≔ { 0, 𝑖𝑖𝑖𝑖 𝑚𝑚𝐴𝐴 < 𝑚𝑚𝐵𝐵
1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. ( 2 )

Both transformations are applied only for the training and the 
validation phase. For the inference, we predict the degradation 
index for each image, removing the need of second image. If
the mean-squared error is used as the loss function, the value -
1 can be used instead of 0 in both equation (1) and (2). It is 
called pseudo label because it captures the interaction between 
two datapoints qualitatively in the absence of true label or 
ground truth.

We do not call it true label because it has the probability of 
being correct. For each pseudo label 𝑦𝑦𝐴𝐴,𝐵𝐵 , there exists a
corresponding true label 𝑦̃𝑦𝐴𝐴,𝐵𝐵 that is unknown to us. We
measure the internal condition indirectly and the quality of the
produced syringe is influenced by other external factors. The 
probability that the pseudo label is equal to the true label given 
time given the time indices of the corresponding data points, 𝑡𝑡𝐴𝐴
and 𝑡𝑡𝐵𝐵,

𝑝𝑝𝑦𝑦=𝑦̃𝑦 ≔ 𝑝𝑝(𝑦𝑦𝐴𝐴,𝐵𝐵 = 𝑦̃𝑦𝐴𝐴,𝐵𝐵|𝑡𝑡𝐴𝐴, 𝑡𝑡𝐵𝐵) ( 3 )

becomes more random as the time index difference between 𝑡𝑡𝐴𝐴
and 𝑡𝑡𝐵𝐵 becomes smaller. Thus, we can describe the probability
of the pseudo label being correct is proportional to the function 
of the time index difference between data A and data B:

(𝑝𝑝𝑦𝑦=𝑦̃𝑦) log(𝑝𝑝𝑦𝑦=𝑦̃𝑦) ~𝑓𝑓(|𝑡𝑡𝐴𝐴 − 𝑡𝑡𝐵𝐵|) ( 4 )

We do not set a minimum distance between 𝑡𝑡𝐴𝐴 and 𝑡𝑡𝐵𝐵 as it
is a hyperparameter that is directly optimized. Through the 
experimental results (see Fig. 7), we show that DDM can learn 
the noise in the production automatically. In addition, pairs 
with lower distance in time index will serve as good training 

samples. When both datapoints are located near each other in 
terms of time index, the difference in degradation between data 
becomes less apparent. It enables the neural network to better 
learn subtle changes in the data and how it changes over time. 
Since our labels have the probability of being correct (Eq. 4),
the goal of deep degradation metric is not to achieve hundred 
percent accuracy in classification problem but to minimize the 
overfit between training and validation and to learn the 
degradation index implicitly.

Lastly, pseudo label transformation is only allowed when 
both datapoints belong to the same sequence. This is because 
the monotonicity property holds true as long as both data points 
belong to the same sequence. We cannot compare the health 
index of two different assets at the same time index nor make
any assumption.

The proposed framework of Deep Degradation Metric can 
be seen in Fig. 2. During training, pairs of data 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐵𝐵, the
neural network will output degradation indices 𝑚𝑚𝐴𝐴 and 𝑚𝑚𝐵𝐵 .
Similar to the time index, the degradation indices are 
transformed into predicted pseudo label 𝑦̂𝑦. At the end of the 
pipeline, the loss function such as binary cross entropy 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 or
mean-squared error 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 is computed:

𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 = − 1
𝑁𝑁 ∑ 𝑦𝑦𝐴𝐴,𝐵𝐵 ⋅ log 𝑦̂𝑦𝐴𝐴,𝐵𝐵 + (1 − 𝑦𝑦𝐴𝐴,𝐵𝐵) ⋅ log(1 − 𝑦̂𝑦𝐴𝐴,𝐵𝐵) ( 5 )

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁 ∑(𝑦𝑦𝐴𝐴,𝐵𝐵 − 𝑦̂𝑦𝐴𝐴,𝐵𝐵)2

( 6 )

where 𝑁𝑁 is the number of datapoint pairs in one mini-batch.
The loss is computed based on pseudo label 𝑦𝑦 and predicted 
pseudo label 𝑦̂𝑦 . The degradation index is learned implicitly
with by utilizing pseudo label transformation. One input is 
sufficient at inference time to predict the degradation index.

4. Experiment

4.1. Dataset

We performed our experiments on image data, comprised of 
high-resolution inspection image of produced syringes (see
Fig. 3). All image data is monochrome. Using the screen-
printing method, a layout is printed on top of the surface of a
syringe. Our dataset consists of 4 sequences of grayscale 
inspection images. In total, our dataset is comprised of 46,389 
inspection images. One sequence ends when the maintenance 

Fig. 2. Deep Degradation Metric framework. The core idea of our DDM framework is to predict which image was taken later in the production. The input is a
pair of images of the same sequence. For each image, the degradation index 𝑚𝑚𝐴𝐴 and 𝑚𝑚𝐵𝐵 are predicted. The predicted degradation indices are then transformed
into the predicted pseudo label 𝑦𝑦𝑦 . The time indices of the images are transformed into pseudo label 𝑦𝑦. The loss function is either binary cross-entropy or mean-

squared error between 𝑦𝑦𝑦  and 𝑦𝑦.
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is applied (in this case when the machine is opened). The first 
sequence contains defect and therefore used in the test phase. 
By using a sequence that contain defects for the test, we can 
analyze the behavior of the model in the case of anomaly or 
defect. Sequence 2 to 4 are used for both training and validation 
phase.

4.2. Preprocessing

To minimize the influence of external factor, the region of 
interest (ROI) is extracted (see Fig. 4) using a template 
matching method. Then, the extracted ROI becomes the input 
of the neural network 𝑥𝑥. Furthermore, by extracting ROI from 
the original image we greatly reduce the memory requirement 
for the neural network and reduce the computation cost. Thus, 
we decrease training time as the batch size can be increased.

Because the glass syringe is transparent, the printed image 
on the bottom side of the syringe is captured in the inspection 
image. To mitigate this problem, the camera is angled so that 
the layout on the bottom side and the top side do not overlap 
with each other. In the ROI extraction, only the layout 
corresponding to the top side and focused by the camera is
extracted and used as the input as seen in Fig. 5.

4.3. Training

For each mini-batch during training phase, pairs of image 
data are randomly selected. Both images of a pairs must belong 
to the same sequence. As we discussed earlier, we do not set a
minimum distance between two randomly selected images.

4.4. Architecture

The size of each ROI image is 720-by-30 pixels, which is 
unusual for a standard convolutional neural network 
architecture. Furthermore, the input is a grayscale image that 
consists of only one channel. Thus, we use the ResNet
architecture with modified hyperparameters that is suitable for 
our use case. Our architecture uses slightly modified basic 
block of the ResNet as the building block. Rectified linear 
activation unit (ReLU) in the basic block is replaced with 
Leaky ReLU [14], [15] activation unit to allow better 
backpropagation in a deeper neural network architecture.
Similar to the original basic block, each block reduces the 
spatial resolution by half. We vary the number of blocks 
between 6 to 9.

All of the hyperparameters except the learning rate and the 
learning rate policy are optimized during the training using a
tool called Optuna [16]. For the learning rate and learning rate 
policy we follow the best practice guide from Smith et al. [17], 
[18]. Learning rate test is utilized to find the best range of 
learning rates. This is based on the idea that using a large 
learning rate will accelerate the convergence rate. However, if 
the learning rate is too large, the training will overfit and might 
cause the training to diverge. The learning rate test is done by 
training the neural network for one epoch. During the training, 
the learning rate is varied exponentially from the lowest 
learning rate allowed to the highest learning rate allowed.  The 
range of learning rates is selected where the slope of the loss
value is at the highest before the loss value reaches its 
minimum. We varied the learning rate during the training 
following 1cycle learning rate policy [18].

Fig. 3. The inspection image in the syringe production. The layout or ROI 
occupies a small portion of the image and thus can be extracted from the

image using a template matching algorithm.

Fig. 4. Inspection system in the syringe production. Because the glass is
transparent, the printed image on the bottom side of the syringe is captured
by the camera. Thus, the printed images on the top and bottom side overlap

with each other. The camera is tilted at a certain angle to separate the printed
images from each other in the inspection image. 

Fig. 5. With tilted camera, the bottom (blue) and the top (red) side of the
printed image are separated. Only the top side part is used as the input of

the neural network.
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4.5. Anomaly in the dataset

The monotonic trend in the RUL prediction holds true in 
most of the cases. However, problem arise when the dataset 
contains anomalies or defects. Anomalous data has a very 
different degradation index in comparison to the neighboring 
data points as can be seen in Fig. 6. If the information about 
anomalous data exists, we can exclude the anomalous data or 
the sequence from the training as we did with sequence 1.
Without label, exclusion of anomalous data is not possible. Yet, 
without removing the possible anomalous data, it will degrade 
the performance of the model. This happens because the time 
index does not correlate with the degradation index anymore.
To remove possible anomalous data, we did multi-pass 
training. The idea is that our model can detect anomalous data 
but not perfect (see Fig. 7). After the first training, data points 
are classified based on the distance between itself and the actual 
trend. The threshold can be computed based on standard 
deviation or quantile. In our experiment, a quantile-based 
threshold performs better as the quantile-based approach is 
more robust against anomalies and outliers. The data classified 
as outlier or anomaly are then removed from the next training.
We repeat this process three times or until the number of 
possible outliers is negligible. 

5. Result

The predicted degradation index can be seen in Fig. 7 with 
pseudo label prediction accuracy reached at 84%. The blue line 
depicts the predicted degradation index at each time index. 
From the predicted degradation index, we can see that the 
production process is noisy due to various reasons. The orange 
line is the trend of the degradation index computed based on 
moving average with window size of 35. Each sequence starts 
from different initial degradation index. This reflects the 

difference in the start condition of the asset at the beginning of 
the process. Furthermore, the developments of the degradation 
index are also different from one sequence to another. It can be 
seen by looking at the different slope value of each trend. The 
red line is the threshold at which the asset should be 
maintained. The threshold value can be determined based on 
the degradation index at the end of the sequences used for 
training. At the end of sequence 4, the degradation index is 
slightly lower compared to other sequences, signaling for a
possible under-utilization of an asset. For the sequence 1, the 
neural network behaves as we expect given defective printed 
image by predicting much higher degradation index compared 
to the degradation index of nominal data.

6. Conclusion

We present a novel approach called Deep Degradation 
Metric for predicting the degradation index implicitly without 

Fig. 6. The trend (orange) of the degradation index in RUL prediction is 
monotonic. However, the sequence might contain anomalous data, depicted 
as datapoints with great difference compared to the trend. Anomalous data
|         are removed using multi-pass training to improve performance.

Fig. 7. The predicted degradation index of all data, including anomalous data. Sequence 2 to 4 are used for both training and validation. The neural network 
predicts the degradation index at each time point (blue). The trend (orange) is computed based on moving average. The threshold (red) is determined based on 
the degradation index at the end of the sequences used for both training and validation. The neural network behaves as expected for defective inspection image

by predicting much higher degradation index compared to nominal ones, as seen in sequence 1.
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ground truth and the prediction can be done at each time index.
This is done by exploiting special property in the remaining 
useful lifetime prediction. We formulate this problem by 
predicting the order of the two data corresponding to the same 
sequence using into pseudo label. The transformation is applied 
to the time index and predicted degradation index. The 
prediction of pseudo labels reached 84% during the 
experiment. During the inference time, one data is sufficient to 
predict the corresponding degradation index. By predicting the 
health or degradation index of an asset at each time point, we 
can have a better insight of how the degradation develop over 
time and avoid possible under-utilization. Information of the 
development of the degradation can be utilized to fine-tune the 
production process in such a way that the degradation develops
slower over time.
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