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Abstract—Playing strategy games is a challenging problem
for artificial intelligence (AI). One of the major challenges is
the large search space due to a diverse set of game compo-
nents. In recent works, state abstraction has been applied to
search-based game AI and has brought significant performance
improvements. State abstraction techniques rely on reducing
the search space, e.g., by aggregating similar states. However,
the application of these abstractions is hindered because the
quality of an abstraction is difficult to evaluate. Previous works
hence abandon the abstraction in the middle of the search
to not bias the search to a local optimum. This mechanism
introduces a hyper-parameter to decide the time to abandon
the current state abstraction. In this work, we propose a size-
constrained state abstraction (SCSA), an approach that limits
the maximum number of nodes being grouped together. We
found that with SCSA, the abstraction is not required to be
abandoned. Our empirical results on 3 strategy games show that
the SCSA agent outperforms the previous methods and yields
robust performance over different games. Codes are opensourced
at https://github.com/GAIGResearch/Stratega.

Index Terms—Game artificial intelligence, state abstraction,
monte carlo tree search, planning

I. INTRODUCTION

Strategy games have helped advance the development of
Artificial Intelligence (AI) to achieve significant progress in
competing with human players [1, 2], AI-AI cooperation [3, 4,
5] and human-AI cooperation [3, 6, 7, 8]. Most of this progress
depends on deep reinforcement learning (DRL). However,
DRL agents have their neural networks trained and tuned for
a specific game, making it difficult to apply these agents to
other game variants. In contrast, search-based algorithms such
as Monte Carlo Tree Search (MCTS) have shown outstanding
performance in general video game-playing [9, 10, 11]. The
ability to play different game variants is important because
real-world games are frequently updated by their developers.
Therefore, in this work, we focus on search-based methods for
strategy game playing.

One of the most challenging problems for search-based
algorithms is the combinatorial search space. Unfortunately,
strategy games typically have a combinatorial search space.
In strategy games such as Starcraft, a number of units (e.g.
buildings, and armies) are distributed on the map. The state
space of these games is defined as the combination of unit

properties (e.g. positions, health points). This combinato-
rial space increases exponentially with the number of game
components (including the unit number and unit property
etc.) [12, 13]. On top of that, most strategy video games have
a large set of unit variants and each unit has a diverse set
of properties. Together, they produce large state and action
spaces, resulting in a much larger branching factor compared
to other games. With a large branching factor, MCTS finds it
difficult to explore the tree deeply for accurate action-value
approximation and thus fails to perform well in these games.

State abstraction [14, 15] is a powerful technique that helps
MCTS solve large-scale planning problems. State abstraction
methods focus on simplifying the search space, which is often
achieved by aggregating similar states. In strategy games, state
abstraction [16, 17, 18, 19] has been applied to reduce the
search space and gain significant performance improvements.
However, one of the issues that hinder the application of
state abstraction is a lack of data for approximating the
state abstraction, resulting in a possible poor-quality state
abstraction. To avoid this state abstraction to degrade the
performance, Xu et al. [19] proposed an early stop mechanism
to abandon the constructed state abstraction at an early stage.
However, this approach introduces a hyperparameter whose
range depends on the training budget, making it difficult to
select an appropriate value.

In this paper, we propose the size-constrained state abstrac-
tion (SCSA), a novel approach to address the negative effect
of a potential poor-quality state abstraction. SCSA limits the
maximal number of nodes in the same node group and does
not need the early stop. Meanwhile, its hyperparameter is less
sensitive to the previous approach. Finally, we evaluate the
SCSA agent in 3 strategy games using a common value of this
size limit. It outperforms all the baseline agents in 2 simple
games and achieves results competitive to Elastic MCTS [19]
in another more complex game.

The main contributions of this work are listed below:
1) We proposed a novel approach to address planning with

a poor-quality state abstraction in strategy game-playing.
2) Our empirical results show that the proposed method

achieves outstanding performance in 3 strategy games
of different complexity.

3) We analyzed the compression rate under the SCSA and
Elastic MCTS [19]. SCSA shows a lower compression979-8-3503-5067-8/24/$31.00 ©2024 IEEE
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Fig. 1: A screenshot of Kill The King game. In this case, each
player has one king, two warriors, two archers and two healers

Fig. 2: A screenshot of Push Them All game. Each player has
three pushers that try to push enemy units into holes.

rate, revealing a trade-off between memory usage and
agent performance under the state abstraction.

II. RELATED WORK

State abstraction for MCTS recently gained much interest
from the community. Jiang et al. [14] proposed to aggregate
same-layer tree nodes with Markov decision process homo-
morphism approximated from samples. This method shows
a promising performance in the board game Othello. Anand
et al. [20] proposed a state-action abstraction method that
aggregates state-action pairs instead of states (tree nodes).
Anand et al. [21] propose progressive state abstraction that
updates the state abstraction more frequently instead of per
batch. Hostetler et al. [15] proposed a progressive refinement
method to construct state abstraction. Baier et al. [22] proposed
abstraction over opponent moves to aggregate tree nodes
having the same opponent moving history. Sokota et al. [23]
proposed abstraction refinement to reject similar states to be
added in the tree. These methods prove the effectiveness of
state abstraction in tackling large branching factors in MCTS.
However, their application is mainly limited to planning prob-
lems and board games. This work instead focuses on more
complex strategy games.

In the early study, hand-crafted state abstraction were ap-
plied to help strategy game play. Chung et al. [16] used a
handcrafted state abstraction to divide the game map into tiles.
Synnaeve et al.[17] proposed a mechanism to separate the map

Fig. 3: A screenshot of Two Kingdom game. The blue side
spawned a worker to mine the gold and the red side spawned
three warriors to protect the king.

in StarCraft to regions that are connected through checkpoints.
Uriarte et al.[24] also used the technique developed by Syn-
naeve et al. [17] but further removed combat-irrelevant units
from the map. Although these hand-crafted state abstractions
can significantly reduce the size of state space for some games,
they rely on human heuristics and thus fails to generalize to
different games.

Except for hand-crafted state abstraction, automatic state
abstraction are also explored in strategy game-playing in recent
years. A parameter optimization method [25] was leveraged
to search unit features that can be removed from the unit
vectors. By removing some features, states having all other
features the same are merged. Dockhorn et al. [18] proposed
to represent game states with a combination of unit vectors.
Our work is closely related to Xu et al. [19], where an
elastic MCTS method is proposed for strategy game-playing.
In elastic MCTS, the state abstraction is first constructed in a
batch manner, similar to Jiang et al. [14]. Later, the constructed
state abstraction is abandoned and abstract nodes are split
into ground tree nodes. Our work does not need to abandon
the state abstraction, and thus is more consistent with state
abstraction usage in planning [14, 15, 20, 21].

III. THE STRATEGA PLATFORM

Stratega [26] is a general strategy game platform for testing
AI agents. To evaluate the general performance of the proposed
method, we select 3 two-player turn-based strategy games
from the Stratega platform. They are Kill The King (KTK),
Push Them All (PTA) and Two Kingdoms (TK). We next
introduce the details of these games.

In KTK (Figure 1), each player controls a set of units
including a king. The goal of this game is to kill the opponent’s
king. We instantiate the army for each player as a king, a
warrior, an archer, and a healer. All units have the move
action. Based on that, the king and the warrior can attack
neighbour enemy units. The archer can attack enemy units in
range. The healer can heal ally units. Following Xu et al. [19],
each unit also has an Do-nothing action. The action space size
for a 4-unit army is about 105.

In PTA (Figure 2), a player controls units to push enemy
units in different directions. The unit being pushed will move



its position toward the corresponding direction. To win this
game, all the enemy units need to be pushed into holes
distributed in the map. Each player has 3 pusher units. The
action set for each pusher is [Move, Push, Do-nothing],
resulting in an action space of (4 + 1) × 4 × 4 = 80. The
first term indicates moving in 4 directions or not moving,
the second term is selecting a neighbour unit (there are 4
neighbour grids) and the last term is pushing the enemy unit
in 4 different directions. With 3 pushers, the final action space
is 803 = 512, 000.

The TK game (Figure 3) is more complex. It consists of
technologies, resources, unit spawning, and combat. At the
beginning of a gameplay, each player has a castle and a king.
The aim is the same as KTK, i.e. kill the opponent king.
However, a set of units need to be spawned from the castle. A
technology Mining is required to be researched for spawning
worker. The research takes one round to be finished. The
Worker unit can collect gold from gold veins and Warrior,
Night, Wizard and Healer can be spawned with gold.

IV. BACKGROUND

A. Monte Carlo Tree Search

MCTS [27] is a method to solve sequential decision-making
problems with a forward model. The forward model is used to
roll out the game. I.e., given a state and a valid action under
this state, the forward model returns the next state. Using the
forward model, MCTS builds up a tree to approximate the
value for actions under the current state. In the generated tree,
each node represents a game state and each branch represents
a valid action of its source node. We next introduce the 4
stages for building up this tree: selection, expansion, rollout
and back-propagation.

The selection stage selects a tree node as an input for the
subsequent stages. The selection starts from the root node and
keeps selecting a branch to the next layer until a target node
is reached. The target node could be a leaf node (a node with
no children) or a node where not all its actions have been
added to the tree as branches. To select the next-layer node,
node values (e.g. the UCB value [28]) for all its children are
calculated and the node with the highest UCB is selected.
Depending on the node type of the target node, MCTS enters
different stages. If the target node is a terminal state, it enters
the back-propagation directly. In another case, the target node
is a non-terminal state, an action that has not yet been added
as a branch. By running this action in the forward model, the
next state is returned and is added as a new child. Based on this
new state, a roll-out policy takes a sequence of actions until
a pre-determined depth or a terminal state is reached. This is
the rollout stage. The output state from rollout is evaluated
by a state evaluation function to obtain a score. This score is
used by the back-propagation stage. In the back-propagation
stage, the score from the target state is added to all states in
the trajectory of selection. i.e. a node sequence from the root
node to the target node.

Each MCTS iteration consists of these 4 or 3 stages (the
roll-out stage is skipped if the selected node is a terminal

state). The computation budget in this work is set as the
maximum number of forward model calls. After running out
of the budget, a recommendation policy selects an action to
execute in the game. A common recommendation policy is
selecting the branch leading to a node with the highest visit
count.

B. Monte Carlo Tree Search with Unit Ordering

In strategy games where many units are distributed on the
map, the action space is the combination of all unit actions,
which can easily reach a high complexity. e.g. in KTK, the
combinatorial action space reaches a magnitude of 105. To
reduce the action space, Xu et al. [19] propose the MCTS
with unit ordering (MCTSu). In MCTSu, the move ordering of
units is randomly initialized and is fixed throughout the whole
game. Each node controls only one unit and its children control
the subsequent unit in the move order. With this setting, the
tree becomes deeper but narrower. MCTSu has shown a strong
performance in the multi-unit strategy games.

C. State Abstraction and Approximate MDP Homomorphism

A Markov Decision Process (MDP) is defined as
⟨S,A, R, P, γ⟩, where the S is the state space, A the action
space, R : S × A 7→ R the reward function, P : S × A 7→ S
the transition function and γ ∈ R is a discount factor. A state
abstraction for an MDP is < Sϕ,A, R, P̂ , γ >, where the Sϕ
is the abstract state space. Each abstract state includes a set
of states. The P̂ : Sϕ × A 7→ Sϕ defines a transition function
based on abstract states.

A key step to construct state abstraction is defining a state
mapping function ϕ : S 7→ Sϕ that maps a ground state to an
abstract state. The function ϕ can be implemented by defining
similarity between states and aggregating similar states to the
same abstract state. Approximate MDP homomorphism [29]
is a typical state similarity measurement. For two states s1 and
s2, it is defined by the approximate error of reward function
ϵR and the approximate error of transition function ϵT :

ϵR(s1, s2) = max
a∈A

|R(s1, a)−R(s2, a)| (1)

ϵT (s1, s2) = max
a∈A

∑
s′ϕ∈Sϕ

∣∣∣∣∣∣
∑
s′∈s′ϕ

T (s′|s1, a)−
∑
s′∈s′ϕ

T (s′|s2, a)

∣∣∣∣∣∣
(2)

where T (s′|s, a) is the transition probability, ϵR measures the
maximal difference between reward functions of the given
states and ϵT measures the worst-case total variation distance
between state transition distributions.

D. Elastic Monte Carlo Tree Search

The elastic MCTS method [19] is built upon MCTSu. It
aggregates tree nodes with approximate MDP homomorphism.
The constructed node groups are split into ground tree nodes
with early stop. Algorithm 1 and Algorithm 2 (without the
blue parts) provide pseudocode for elastic MCTS.

For every B MCTS iteration (line 6 in Algorithm 1), elastic
MCTS checks all the tree nodes that have not yet been added



in an abstraction node and calculates their approximate MDP
homomorphism errors (line 8-9 in Algorithm 2). If the errors
between the candidate state s1 and an abstraction node ŝ are
below the pre-determined error thresholds ηR and ηT , s1 is
added into ŝ (line 13). If there is no abstract node that matches
this condition, a new abstract node is created with the s1 as
the only member node (line 15). The early stop shows in line
4-5 from Algorithm 1. It splits all abstract nodes into ground
nodes once the MCTS iteration reaches an early stop threshold
αES .

V. METHOD

Based on MCTS, our method automatically groups tree
nodes by the approximate MDP homomorphism. Following
Jiang et al. [14] and Xu et al. [19], SCSA groups tree nodes
from the same layer at every batch (a fixed number of MCTS
iterations). At each iteration, the MCTS samples one trajectory
that consists of a sequence of nodes, starting from the root
node to a leaf node. To approximate the MDP homomorphism,
a batch of samples is required for calculating the approximate
errors (Equation 1). Therefore, for every B iteration(s), SCSA
checks every tree node that has not yet joined a node group to
expand the current abstraction. There are two approaches for a
node to be added to the existing abstraction, depending on the
approximate MDP homomorphism errors. If the approximate
errors between this candidate node and a node group are
below the thresholds, this candidate node is added to the
corresponding node group, becoming a member node of this
group. When the approximate errors between the candidate
node and all same-layer groups are found higher than the
thresholds, a new node group is created and this node becomes
the only member node.

It is found that a large number of samples are required
to obtain high-quality state abstractions [14]. In strategy
games where the search space are large, it is infeasible to
obtain enough samples. Under limited samples, the constructed
state abstraction might be of unstable quality. Moreover, it
is difficult to evaluate the quality of the constructed state
abstraction. Xu et al.[19] discovered that abandoning the
existing state abstraction in the middle of MCTS running
can bring significant performance improvement. In contrast
to their approach [19], SCSA does not abandon the state
abstraction. Instead, a global size constraint is defined to limit
the maximum number of member nodes for every node group.
Below, we introduce the abstraction construction in detail.

The pseudocodes of the SCSA algorithm are shown in
Algorithm 1 and Algorithm 2, with highlighted lines in red
representing the removed part from Elastic MCTS, and the
lines highlighted in blue are newly introduced by the SCSA
method. The computation budget constant is NFM , meaning
the maximum number of available forward model calls. In
Algorithm 1, lines 6-7 presents the early stop with a threshold
αES [19]. Our method removes this part.

We first introduce the hyperparameters, NFM the compu-
tation budget, B the batch size, ηR reward function error, ηT
transition error and SIZE LIMIT the maximum node group

Algorithm 1 Elastic MCTS

1: Require: NFM , B, ηR, ηT ,K, SIZE LIMIT
2: Initialize: nFM = 0, nMCTS = 0
3: ϕ := s → ŝ, ŝ = {s} # Initialize the abstraction
4: while nFM < NFM do
5: cFM , L = MCTSIteration(ϕ)
6: if nMCTS > αES then
7: ϕ := s → ŝ, ŝ = {s}
8: else if nMCTS%B == 0 then
9: ϕ = ConstructAbstraction(ϕ, ηR, ηT , L, SIZE LIMIT)

10: nFM = nFM + cFM

11: nMCTS = nMCTS + 1

size. In the beginning, the abstraction ϕ is initialized by
mapping states to themselves. Within the computation budget
(line 4), an MCTS iteration is run with the forward model
cost cFM and the current tree depth L returned (line 5). For
every B iteration, the state abstraction is updated by calling
the ConstructAbstraction function (Algorithm 2), after which
the forward model call counter nFM and the MCTS iteration
counter nMCTS are updated.

We next introduce the ConstructAbstraction function. Algo-
rithm 2 iterates from the bottom of the tree to the root node,
layer by layer (line 2). For each layer, all nodes that are not
added to the abstraction are iterated (line 3). For a candidate
node s1, the algorithm iterates through all same-layer abstract
nodes to consider accepting s1 (line 5). Specifically, SCSA
limits the maximal abstract node size. Therefore, if an abstract
node is found exceeds the limit, this abstract node is skipped
(line 6-7). Otherwise, the approximate errors between s1 and
each state from the abstract node is calculated (line 10-11). A
node is added into an abstract node (line 14-15) only if the
similarities between s1 and all ground nodes from the abstract
node are below the thresholds (line 9-13). If a node is finally
find not added into any abstract node, a new abstract node is
created (line 17-18).

VI. EXPERIMENTS

Baselines: We implement 5 baseline agents to evaluate the
performance of the SCSA agent. They are Rule-based , MCTS,
MCTSu, RG MCTSu and Elastic MCTSu. Details about each
agent are listed below:

1) Rule-based : Stratega platform has implemented a Rule-
based agent for each game. We here briefly introduce
their implementation. The Rule-based agent for KTK
prioritizes attacking isolated enemy units and healing
strong ally units. For each enemy unit, an isolation score
is calculated considering its nearby ally units and enemy
units. At each round, the Rule-based agent controls its
units to i) approach the enemy units with the highest
isolation score and attack them; and ii) approach an
ally unit to heal it. The PTA Rule-based agent controls
pushers to approach the nearest enemy unit and push
it towards the nearest hole. In TK, the Rule-based agent
first researches Mining, which is necessary for spawning



Algorithm 2 ConstructAbstraction

1: Require: ϕ, ηR, ηT , L, SIZE LIMIT
2: for l = L to 1 do
3: for all node s1 in depth l that is not grouped do
4: s1 in ϕ = false
5: for all abstract node ŝ in ϕ do
6: if |ŝ| > SIZE LIMIT then
7: break
8: s1 in ŝ = true
9: for all node s2 in ŝ do

10: ϵR = maxa |R(s1, a)−R(s2, a)|
11: ϵT =

∑
s′ |T (s′|s1, a)− T (s′|s2, a)|

12: if ϵR > ηR or ϵT > ηT then
13: s1 in ŝ = false, break
14: if s1 in ŝ == true then
15: Add s1 in abstract node ŝ
16: s1 in ϕ = true
17: if s1 in ϕ == false then
18: ϕ(s1) = {s1} # Create a new abstract node

workers. Once the research is finished, a worker is
spawned and is assigned the task of collecting gold from
the nearest gold vein. These gold are used to spawn
warriors. Once the number of warriors reaches 2, these
warriors are sent to attack the enemy king. Whenever its
warriors died, new warriors would be spawned if they
had enough gold resources.

2) MCTS: An MCTS agent without using state abstraction.
3) MCTSu: An MCTS agent with unit ordering.
4) RG MCTSu : An MCTSu agent with randomized state

abstraction. Each new tree node either joins an existing
node group (with the probability 1

N+1 for each group,
supposing there are already N node groups) or creates
a new node group with itself as the only member node
(with the probability 1

N+1 ).
5) Elastic MCTSu: MCTSu with state abstraction based on

approximate MDP homomorphism and early stop [19].
6) SCSA: An MCTSu agent with approximate MDP ho-

momorphism abstraction. Each abstract node has a size
limit defined by SIZE LIMIT.

Heuristic functions: The same as typical MCTS in games,
we utilize heuristic functions to evaluate states reached by
the MCTS roll-out. The heuristic functions are game-specific.
In each game, all agents except for the Rule-based agent
share the same heuristic function. Below, we introduce the
implementation details of the heuristic functions for each
game.

In all games, the scores of states where the player wins,
loses and draws the game are 1, −1 and 0, respectively. For all
the other states, the heuristic function returns a score between
0 and 1. The KTK heuristic function returns a score of R =
1− d·h

Dktk·H , where the d is the sum of the distance from each
ally unit to the enemy king, Dktk is the maximum value of d, h
is the health points of the enemy king and H is the maximum

TABLE I: Agent parameters for Section VI-B experiment

Agents C K αABS ηR ηT SIZE LIMIT

Kill The King (KTK)

MCTS 0.1 10 / / / /
MCTSu 1.0 10 / / / /

RG MCTSu 0.1 10 8 / / /
Elastic MCTSu 0.1 10 10 0.05 1.0 /

SCSA 0.1 10 / 0.05 1.0 2

Push Them All (PTA)

MCTS 10 10 / / / /
MCTSu 10 20 / / / /

RG MCTSu 0.1 10 4 / / /
Elastic MCTSu 10 10 8 1.0 1.0 /

SCSA 10 10 / 1.0 1.0 2

Two Kingdoms (TK)

MCTS 0.1 20 / / / /
MCTSu 1.0 20 / / / /

RG MCTSu 0.1 10 8 / / /
Elastic MCTSu 1.0 20 6 0.05 1.0 /

SCSA 1.0 20 / 0.05 1.0 2

value of h. The strategy is controlling the units to approach the
enemy king and try to search for a state that leads to victory.

For PTA, the score of a state is a sum of three parts. The first
one is 0.2×

∑
u minu′ dis(u,u′)

Dpta
, where the u is an ally unit, u′ is

an enemy unit, dis(·, ·) returns the Euclidean distance between
the two units. The second part is 0.4× |Ut|

|U0| , where |Ut| is the
number of alive ally units at time step t and U0 is the number
of the units in the beginning. The last part is 0.4× |U ′

0|−|U ′
t|

|U ′
0|

,
where |U ′

t |, |U ′
0| are the number of enemy units at time step

t, respectively.
In TK, the state score is calculated according to finishing a

series of tasks. Finishing Mining research returns 0.2, having
worker alive returns 0.1 and having units that have action
attack returns 0.1. Other scores include 0.1× the distance of
ally workers to its nearest gold vein, 0.2× collected gold,
0.3× the distance between all ally units and enemy units. The
normalized score lands in [0, 1].

A. Agent Parameter Optimisation with NTBEA

As each agent has different optimal parameters for each
game, we apply the N-Tuple Bandit Evolutionary Algorithm
(NTBEA) [25] to automatically optimize agent parameters in
different games. The NTBEA uses an N-Tuple system to break
down the combinatorial space of the parameters. NTBEA
has its own parameters, an exploration factor, the number
of neighbours and the number of iterations. Following Xu et
al. [19], these values are set to 2, 50 and 50, respectively. Next,
we introduce the parameter space for each game-playing agent.

The parameters for MCTS and MCTSu are the explo-
ration factor C ∈ {0.1, 1, 10, 100} and rollout length K ∈
{10, 20, 40}. RG MCTSu has C,K and an early stop thresh-
old αES ∈ {4 × B, 8 × B, 10 × B, 12 × B}, where the
B = 20 is a constant batch size. Elastic MCTSu has
C,K,αES and approximate errors for reward function and
transition function ηR ∈ {0.0, 0.04, 0.1, 0.3, 0.5, 1.0}, ηT ∈
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Fig. 4: The number of opponents that the agent outperforms.

{0.0, 0.5, 1.0, 1.5, 2.0}. For SCSA, we use the same param-
eters as Elastic MCTSu. SCSA does not require the early
stop threshold but requires a SIZE LIMIT, which is linearly
searched and set to 2 in the first group of experiments. The
hyper-parameters tuned by NTBEA are shown in Table I.

Except for parameters, the budgets for search-based agents
vary in different games. We set this budget based on the
competitive performance of MCTSu playing against the corre-
sponding Rule-based agent. In KTK and PTA the budget is set
to 10, 000 number of forward model calls. In TK, the budget
is 5, 000 forward model calls.

B. Performance on multi-unit-grid-based games

To evaluate the general performance of SCSA agents, we
ran an experiment with agents playing against each other in a
two-player manner. For each game, we set up 50 initial unit
positions (randomly sampled). For each initial unit position,
2 evaluations are made by switching sides. Each evaluation is
made with 5 random seeds, resulting in 500.

The general performance of each agent is shown in Figure 4.
In KTK and PTA, SCSA outperforms all its opponents. In
the more complex TK game, SCSA shows a competitive
performance to Elastic MCTSu.

The detailed win rates for each agent pair are shown in
Tables II, III and IV. In KTK, the SCSA agent outperforms all
its opponent agents in a significant gap. MCTS shows a weaker
performance than the rule-based agent. MCTSu shows a
stable and better performance than the MCTS. Elastic MCTSu

outperforms both RG MCTSu and MCTSu.
In PTA, the overall win rates are higher than KTK. In this

game, the SCSA agent also outperforms all its opponents.
Elastic MCTSu shows a strong performance in that it beats
all agents except for the SCSA agent. MCTSu outperforms
MCTS by a large margin. The MCTS agent is still weaker
than the rule-based agent.

In TK, the Rule-based agent outperforms the MCTS signif-
icantly while other agents outperform Rule-based with large
margins. In this complex game, MCTSu, Elastic MCTSu and
SCSA are showing close performances.

TABLE II: Win rates with standard errors for games Kill The
King

Agent 1 Agent 2 Agent 1 Agent 2

1 King, 1 Archer, 1 Warrior and 1 Healer

MCTS Rule-based 47.2(1.9)% 52.8(1.9)%
MCTSu Rule-based 62.2(1.1)% 37.6(1.3)%

RG MCTSu Rule-based 63.4(1.0)% 36.6(1.0)%
Elastic MCTSu Rule-based 54.2(1.4)% 44.8(1.6)%

SCSA (ours) Rule-based 55.6(0.6)% 44.4(0.6)%

MCTSu MCTS 58.0(1.2)% 41.4(1.2)%
RG MCTSu MCTS 61.6(0.9)% 38.4(0.9)%

Elastic MCTSu MCTS 61.4(1.2)% 36.6(1.2)%
SCSA (ours) MCTS 58.2(1.9)% 30.2(1.7)%

RG MCTSu MCTSu 49.0(0.9)% 51.0(0.9)%
Elastic MCTSu MCTSu 61.2(1.4)% 38.8(1.4)%

SCSA (ours) MCTSu 53.8(1.7)% 38.8(1.7)%

Elastic MCTSu RG MCTSu 50.2(1.0)% 49.8(1.0)%
SCSA (ours) RG MCTSu 52.4(1.4)% 47.4(1.3)%

SCSA (ours) Elastic MCTSu 49.2(2.1)% 38.8(1.9)%

In conclusion, these experiments verify the performance im-
provement brought by the unit ordering and Elastic MCTS. It
also evaluates the performance of the SCSA agent, confirming
its outstanding performance in all three games. In addition, it
shows good performance of SCSA agents in different games
can be achieved by the same value for SIZE LIMIT. In
this experiment, we show that 2 is an appropriate value for
SIZE LIMIT. Comparing different games, the SCSA agent per-
forms less strongly in the more complex TK game, indicating
a potential issue of scalability.

C. Influence of abstract state size

To better investigate the influence of different values for
SIZE LIMIT, we assigned different values from 2 to 5 and
run the agent pair of SCSA - Rule-based agent. The same
as in Section VI-B, 500 games are run for each value of
SIZE LIMIT. Figure 5a-5c shows the win rates with standard
errors in three games. We observe the optimal SIZE LIMIT
values for KTK and PTA is 3 but TK has its optimal values
at 2 and 4. We also observed that larger SIZE LIMIT values
(e.g. a value of 5) can degrade the performance, which reveals
the trade-off between the tree size and the performance. With
a larger SIZE LIMIT, more groups are aggregated together
therefore the tree size becomes smaller. However, a tree that
is too small might cause performance degradation.

We used a value of 2 for all games and the agents showed
satisfactory performance. Compared to different αES values
are required in each domain (See Table V in Xu et al. [19]),
the SIZE LIMIT is less sensitive across domains.

D. Compression Rate

To compare the influence of different state abstractions on
tree size, we visualize compression rate at different MCTS
iterations (see Figure 6a-6c). The compression rate is defined
as the number of tree nodes dividing the number of abstract
nodes. We can see that the SIZE LIMIT has constrained



(a) Kill The King (KTK) (b) Push Them All (PTA) (c) Two Kingdoms (TK)

Fig. 5: Performance of the SCSA agent with different values for its size constraint. Results of the SCSA agent playing against
the corresponding Rule-based agents are visualized, including win rates and standard errors.

(a) Kill The King (KTK) (b) Push Them All (PTA) (c) Two Kingdoms (TK)

Fig. 6: Compression rates for each tested game including standard errors from 10 game plays. The vertical line indicates the
iteration when the abstraction is split into the original node for the Elastic MCTSu.

TABLE III: Win rates with standard errors for games Push
Them All

Agent 1 Agent 2 Agent 1 Agent 2

MCTS Rule-based 48.8(1.6)% 51.2(1.6)%
MCTSu Rule-based 69.0(1.1)% 30.8(1.2)%

RG MCTSu Rule-based 74.0(2.3)% 26.0(2.3)%
Elastic MCTSu Rule-based 81.8(0.9)% 18.0(1.1)%

SCSA (ours) Rule-based 79.8(1.6)% 20.2(1.6)%

MCTSu MCTS 64.4(1.1)% 33.6(1.4)%
RG MCTSu MCTS 86.2(0.7)% 12.0(0.7)%

Elastic MCTSu MCTS 85.4(1.5)% 13.0(1.7)%
SCSA (ours) MCTS 86.0(1.4)% 12.8(0.9)%

RG MCTSu MCTSu 73.4(2.0)% 25.6(1.9)%
Elastic MCTSu MCTSu 80.2(1.0)% 18.0(1.0)%

SCSA (ours) MCTSu 77.2(1.8)% 22.0(2.0)%

Elastic MCTSu RG MCTSu 62.4(1.4)% 35.8(1.3)%
SCSA (ours) RG MCTSu 58.8(1.8)% 40.4(2.0)%

SCSA (ours) Elastic MCTSu 52.0(1.6)% 46.8(1.9)%

the compression rate by limiting the maximal size of each
abstract node. The overall compression rates of Elastic MCTSu

are higher than SCSA and differ in different games. The
vertical lines in Figure 6a-6c indicate the iteration when Elastic
MCTSu drops state abstraction.

We observe from the plots that Elastic MCTSu without
early stop can obtain a higher compression rate but this
degrades the performance (See [19]). The SCSA agent out-

TABLE IV: Win rates with standard errors for games Two
Kingdoms

Agent 1 Agent 2 Agent 1 Agent 2

MCTS Rule-based 12.6(0.5)% 81.2(1.2)%
MCTSu Rule-based 90.8(1.7)% 7.6(1.6)%

RG MCTSu Rule-based 88.0(1.1)% 11.8(1.2)%
Elastic MCTSu Rule-based 89.2(1.4)% 9.6(1.3)%

SCSA (ours) Rule-based 88.8(1.0)% 9.8(1.3)%

MCTSu MCTS 96.0(0.4)% 4.0(0.4)%
RG MCTSu MCTS 89.6(1.2)% 10.4(1.2)%

Elastic MCTSu MCTS 96.0(0.5)% 4.0(0.5)%
SCSA (ours) MCTS 94.0(0.6)% 6.0(0.6)%

RG MCTSu MCTSu 43.6(1.6)% 56.2(1.6)%
Elastic MCTSu MCTSu 52.2(2.1)% 47.6(1.9)%

SCSA (ours) MCTSu 49.0(1.8)% 50.8(1.8)%

Elastic MCTSu RG MCTSu 62.4(1.0)% 37.6(1.0)%
SCSA (ours) RG MCTSu 57.0(1.6)% 43.0(1.6)%

SCSA (ours) Elastic MCTSu 51.4(2.7)% 48.6(2.7)%

performs Elastic MCTSu in two of the three games and it has
lower compression rates. These observations reveal a trade-off
between the abstracted tree size and the agent performance.

VII. CONCLUSION AND FUTURE WORK

Automatic state abstraction has recently been applied to
MCTS to address large search spaces in strategy game-
playing. However, the lack of data results in state abstraction
of unstable quality. We propose the novel SCSA to control



the abstraction quality. Compared to the previous early stop
approach, our method has a much smaller range for its
hyperparameter. The empirical results on 3 strategy games
of different complexity present the effectiveness of SCSA on
strategy game playing.

The SCSA outperforms baselines in two games but not in
the complex TK game, indicating a potential shortcoming of
scalability. A possible solution is to combine state abstraction
with pruning. We plan to further investigate the scalability of
the SCSA agent in our future work.

Limitation We analyze the tree size under different state
abstraction size constraints, revealing a trade-off between
memory usage and agent performance.
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