
WindGISKI: Using AI to Propose Areas Suitable
for Building New Wind Turbines

Daniel Gritzner∗, Sandra Peters-Erjawetz‡, Carsten Fichter‡, and Jörn Ostermann∗
∗Institut für Informationsverarbeitung, Leibniz Universität Hannover, Germany

{gritzner,ostermann}@tnt.uni-hannover.de
‡Hochschule Bremerhaven, Germany
{speters,cfichter}@hs-bremerhaven.de

Abstract—To mitigate the effects of man-made climate change
a switch to renewable energy sources is necessary. However,
new wind turbines are not built as quickly as is necessary in
Germany. There are many sources of delays or even conflicts, e.g.,
slow approval processes, lack of public acceptance, or wildlife
conservation laws. In the project WindGISKI we therefore
developed an AI model which is able to predict wind farm
suitability scores for areas in Germany, as well as which features
are most important for the model’s prediction. By feeding this
information into a geographic information system (GIS), this
system can assist end users, such as region planners in local
authorities or employees of wind energy companies, in their
decision making and thus speed up the transition to renewable
energy. In this paper we present a survey we conducted among
industry experts, our AI model and a work-in-progress prototype
of our vision of an AI-enhanced GIS. The expert survey was
necessary to identify suitable samples for training our AI. It
showed that urban structure and nature preservation are most
relevant to wind energy projects, while social factors are barely
relevant. Additionally, we designed a new metric for measuring
our model’s performance in the light of a very drastic class
imbalance of samples which rendered existing metric unsuitable.

Index Terms—artificial intelligence, deep learning, geographic
information system, renewable energy, wind energy

I. INTRODUCTION

The German government aims for the country to become
neutral in terms of greenhouse gas emissions by 2045 in
order to minimize the effects of man-made climate change.
Producing energy from renewable sources, such as wind and
solar energy, is an essential aspect in the strategy to achieve
emission neutrality. However, the actual amount of new wind
turbines being built every year lags behind the target metrics
set by the government. Multiple reasons prevent a faster
expansion of wind energy in Germany, e.g., slow approval of
permissions for wind farm projects, high construction costs, a
lack of public acceptance of wind turbines, or conflicts with
nature protection laws or laws regulating disturbances caused
by exposure to noise or shadows [1], [2]. As a consequence,
too few potential areas for wind farms are proposed by local
authorities and the actual wind energy projects are often
delayed beyond their initial target date due to lawsuits. Even
though the wind energy industry gained a lot of experience in

This research is funded by the Bundesministerium für Umwelt, Naturschutz,
nukleare Sicherheit und Verbraucherschutz (BMUV).

Geographic
Information

System
AI

geographic

features

wind farm

area proposals

Fig. 1. The project WindGISKI is about using an AI to enhance a GIS to
assist in finding new, suitable areas for wind farms.

the recent decades, the average time from starting the pre-
planning of a new wind farm to finishing its construction
increased from 5.5 years in 2015 to 8 years in 2022 [3].

The project WindGISKI1 aims to use artificial intelligence
(AI) to enrich a geographic information system (GIS) with
additional information in order to assist people involved with
wind energy projects, e.g., employees at local authorities or at
wind energy companies, in their decision making process, as
shown in Fig. 1. The goal is to identify low conflict areas in
Germany on which new wind farms can be built quickly.

The interdisciplinary project team consists of research in-
stitutes from several fields, including engineering, computer
science, social sciences, and life sciences, as well as compa-
nies working in the renewable energy business. Due to the
broad range of interests affecting wind energy, a wide range
of knowledge is necessary for the success of WindGISKI. The
project covers many aspects: identifying features relevant to
wind energy projects, collecting data suitable for AI model
development, conducting interviews and surveys with industry
experts for validation, implement noise propagation simula-
tions, and more. In the end, the goal is not only to have an
expert-validated AI model proposing areas suitable for wind
farms, but to also have a separate reference booklet which
instructs users of the AI on how to use it, as well as what
other factors to consider when realizing a wind energy project
that an AI cannot cover. As an example, involving the local
population in a project such that it directly benefits from the
nearby wind farm increases the acceptance and therefore how
quickly the turbines can be built.

This paper specifically covers the AI model we developed
for WindGISKI, our vision of how users may interact with
the AI, and what information the AI can provide to assist

1https://www.windgiski.uni-hannover.de/

decision making. The remaining structure is as follows: in the
next section we will discuss related work. Then we describe
our method, i.e., the actual AI model and surrounding aspects
relevant to its development. In the fourth section we will
evaluate our model before finishing with a conclusion.

II. RELATED WORK

The combination of an AI and a GIS has already been
proposed in many cases. The closest work to ours is a
very similar work using an AI-enhanced GIS to assist wind
farm planners in Tuscany, Italy [4]. However, their spatial
resolution is far coarser than ours at 10km compared to our
50m. The next closest is a work predicting suitable wind
turbine locations in the USA [5]. The authors are mainly
concerned with studying the relationship of wind energy and
wildlife conservation, though. Another work is concerned with
predicting wind energy potential using AI and geospatial
data [6]. Wind energy potential is an input feature for our
model. Other works combining AI and GIS include efforts to
improve decision making in other domains, e.g., city planning
or disaster management [7]–[11]. A survey of state-of-the-art
uses of geospatial data, including AI-based ones, can be found
in [12]. A novel approach of combining AI with a GIS is using
a large language model as a user interface to a GIS to help end
user with creating visualizations or evaluations using existing
data within a GIS [13].

III. METHOD

In this section we first discuss our dataset and the difficulties
we faced with collecting suitable data for training an AI
model. A survey conducted among industry experts, which
we present in the second subsection, helped mitigate some of
these difficulties. In the third subsection we explain the models
we evaluated and in the last subsection we present our vision
of how end users should be able to interact with our AI.

A. Dataset

In an initial phase of WindGISKI the project partners col-
lected a list of features relevant to the success of a wind farm
construction project. Each feature was classified as relevant
to the AI model and/or relevant to the reference booklet,
which was mentioned in the introduction, based on whether
the feature is actually measurable and if so, measurable at
a large scale, i.e., for the entirety of Germany. Features
representing clear proposals without any room for decisions,
such as involving the local population and having it directly
benefit from the new wind turbines, were classified as only
relevant to the reference booklet. Features from the categories
meteorology, bodies of water, landscape preservation, nature
preservation, wildlife conservation (birds and bats), forests,
structure of urban development, traffic infrastructure, power
grid infrastructure, topography, aviation, and military concerns
were used by the AI model. Some features were discrete
classifications, e.g., is an area a legally designated nature
preservation area, while other features were continuous, e.g.,
distance to the closest residential building. A small subset

of features was omitted entirely due to funding guidelines:
WindGISKI must be non-political. Therefore features such as
the voting behavior of the local population were omitted.

All of the data relevant to the AI was collected in a geo-
referenced form, mostly as polygons. In order to be able train
a model on this data we partitioned Germany in cells of size
50m × 50m resulting in a tensor of shape [H,W,C] with
the height H = 17359, width W = 12818, and the feature
dimension C. We stored each feature as a separate image
in order to be easily able to choose which feature to load
at each step of the AI training pipeline and which feature
to omit to save processing time and memory. We converted
all polygon coordinates to the EPSG:4839 coordinate system
and rasterized all features into the data tensor. Data which
was already rasterized was reprojected to the same coordinate
system and resolution as our data tenstor.

We used a subset of |Ce| = 33 features to determine cells
on which no wind turbine can be built for any reason, e.g.,
economic reasons (insufficient wind speed) or legal reasons
(presence of residential buildings). For the actual AI model
we used |Cm| = 57 features with some overlap between the
features in Ce and Cm. Again, residential buildings are an
example: they prevent wind turbines from being built in the
same location (Ce) but the distance to the closest such building
is also relevant to how suitable a cell is for wind turbines (Cm).

A naive approach for training a model would be a binary
classification of cells based on whether they are part of an
existing wind farm (positive class) or not (negative class).
However, this approach is unsuitable since the premise of
the project is that cells exists which are suitable for wind
farms but no turbines have been built there yet. Therefore, we
needed a way to identify samples which actually represent the
negative class well. The cells omitted due to Ce are unsuitable
as negative samples since the model would at best learn to look
for overlapping features in Ce and Cm and therefore learn
to identify what we already know. To mitigate this problem,
we used the results of a survey we conducted among industry
experts to create a rough scoring of cells to identify those cells
which are likely negative samples but which are not excluded
due to the presence of a feature in Ce.

We used wind farm cells as positive samples. However, we
face a similar problem as we do with the negative samples.
Due to advances in technology and changes in Germany’s legal
framework some existing wind turbines would no longer be
built nowadays. We created a filtered subset of all existing
wind turbines in which we excluded all wind turbines which
were commissioned before January 1st, 2010, or whose total
height (hub height plus rotor radius) is less than 150m. The
age filter accounts for the change in the legal framework. The
height filter was used to exclude wind turbines which can no
longer be built and run in an economically feasible way today.

Our dataset only contains coordinates of wind turbines
but no wind farm identifiers as that concept is usually not
represented in databases such as the Marktstammdatenregister.
We therefore used the following approach based on heuristics
provided by industry experts. We placed an ellipse around each

wind turbine with its major axis aligned with the prevalent
wind direction. For simplicity and based on expert knowledge,
we assumed south-west winds as prevalent wind direction for
all of Germany. The radius along the major axis was 5D and
3D along the minor axis with D being the rotor diameter.
This ellipse represents the area in which no other wind turbine
should be built due to negative interactions between nearby
wind turbines. However, since wind farms are built compactly
to maximize the number of turbines in a farm, these ellipses
will overlap for close turbines within the same wind farm.
Therefore, we use the overlapping of these ellipses as criterion
to decide whether two turbines belong to the same wind farm.

Due to our assumptions wind farm assignments can be
efficiently computed by rotating our coordinate system such
that the first axis aligns with the prevalent wind direction and
the second axis aligns with the minor axis. By scaling all
coordinates by 1

5 and 1
3 along the respective axes all ellipses

become circles of radius D in this transformed space. As a
result, we only need to compare the Euclidean distance of any
two turbines in this transformed space to the sum of their rotor
diameters to decide whether their ellipses overlap or not.

After identifying wind farms, we computed the convex hull
of each wind farm and intersected this hull with the union of
all the wind turbine ellipses. The resulting area was used as
the wind farm area. The intersection of the convex hull and
the ellipses was necessary to get a better approximation of
some wind farms, e.g., those shaped roughly like the letter
L. We then rasterized the resulting wind farm areas into our
data tensor. We performed this entire process once without
either of the previously described age and height filters and
once with both filters active. The difference in area between
the two variants was marked as “ignored”. This area contains
a wind farm so we do not want to use it for negative samples
but due to the aforementioned reasons we do not want to use
it for positive samples either.

To compute distances to a feature, e.g., the distance to
residential buildings or forests, we used an algorithm based
on parabola intersections to compute a distance field for the
respective feature [14], [15].

B. Expert Survey

To validate the results of WindGISKI’s AI, interviews with
and a survey among experts were conducted. The interviews
ensured that no relevant features were missing on our list.
We then conducted an online survey among industry experts.
The link to the survey was sent to almost 900 persons, 66
of which responded. 45 of those 66 persons answered the
survey fully, while the rest chose to drop out at some point.
Due to the low number of full responses we consider our
survey to be not be representative but still show trends. The
respondents were employees or members of a diverse set
of groups, e.g., wind energy companies, local authorities,
nature conversation organizations, or law firms. According
to the self-reported experience, about 50% of respondents
have more than ten years of experience in wind energy and
about 23% of respondents have between six and ten years

0 2 4 6 8

Urban Structure
Wildlife Conservation

Nature Preservation
Infrastructure

Immission Control
Aviation

Topography
Bodies of Water

Regional Conditions
Social Factors

8.9
7.2
7.2

6.2
6.0

5.7
3.9
3.8
3.8

2.3

Fig. 2. Mean relevance of feature categories according to a survey we
conducted among experts. We omitted the variance since we do not consider
the survey representative.

negative
influence

moderate
negative
influence

no
influence

moderate
positive

influence
positive

influence

0

5

10

15

20

25

re
sp

on
se

s

residential buildings
business/industry area

Fig. 3. Histogram of expert ratings of two features from the category “urban
structure”. The close proximity of residential buildings is considered to affect
wind farm projects negatively while the close proximity to businesses or
industry on average has no influence according to experts. There is a slight
bias towards a positive influence, though.

of experience. Participants were asked about their goals in
the wind energy industry, for whom they think our AI may
be useful, how relevant each feature category is, and to rate
each feature within each category. The last two questions, i.e.,
feature category relevance and feature rating, are particularly
important for our AI model training.

For the feature relevance participants were asked to assign
an importance or relevance with regard to their goals to each
category on a ten step Likert scale from 1 (low relevance)
to 10 (high relevance). The results are shown in Fig. 2. The
most relevant categories are urban structure (where people live
and work), wildlife conservation (e.g., birds and bats), and
nature preservation. Social factors such as age distribution of
the nearby population are of relatively low concern.

For the feature rating participants were asked to rate each
feature on a five step Likert scale with regard to their goals:

1) Negative influence
2) Moderate negative influence
3) No influence
4) Moderate positive influence
5) Positive influence

Each feature was assigned to exactly one of the categories
in Fig. 2 and all features were grouped by category in the
survey. We also included all features we did not deem relevant

to the AI in our dataset. A small excerpt of the results is
shown in Fig. 3. The responses showed that some features have
a negative influence, e.g., proximity to residential buildings
(urban structure), while others affect wind energy projects pos-
itively, e.g., trust in local authorities (social factors). This even
translated into trends for entire categories. Certain categories
like urban structure or aviation largely contained features
with a negative influence while social factors were deemed
to mostly have a positive influence.

As mentioned in the previous subsection, choosing reliable
negative samples for AI model training from our dataset
was an issue. We therefore used the expert survey results to
implement a rough scoring of each cell from our dataset to
identify negative samples. In our scoring model, we assigned
a factor ωc to each category and to each feature ωf . The score
assigned to a cell is ∑

f∈F

ωc(f) · ωf

with the subset F of features relevant to that cell and c(f)
being the category f is in. The distance up to which each
feature is considered relevant, e.g., up to which distance a
residential building is considered to be close and therefore
relevant, was determined by an industry expert.

To determine the factors ωc and ωf we used the hyperpa-
rameter optimization tool SMAC [16]. First, we computed the
relative amount of responses for each feature category c and
each response i ∈ {0, 1, 2, . . . , 9} such that ci is the relative
amount of responses that rated the category c at 10 − i. As
an example, 63 out of 66 survey participants answered the
question regarding the category c = “urban structure”. 41 out
of those 63 responses rated the relevance of this category as
10, therefore c0 = 41

63 ≈ 0.65. We also determined relative
amounts of responses fi for each feature in the same way.

We modelled ωc has having an exponential decay in rele-
vance, i.e.,

ωc =

9∑
i=0

ci · e−λ·i

with the hyperparameter λ being one of two hyperparameters
optimized by SMAC. We modelled ωf as

ωf = −α · f1 − β · f2 + β · f4 + α · f5

with α = 0.5 + γ and β = 0.5 − γ where γ ∈ (0, 0.5) is the
second hyperparameters opitmized by SMAC. In this equation
f1 is the relative amount of “negative influence” responses, f2
is the relative amount of “moderate negative influence”, and
so on (cf. the enumeration earlier in this subsection).

This modelling was chosen such that an emphasis is put on
the higher ratings wrt. to ωc and such that α and β are values
between 0 and 1 with α > β. Furthermore, ratings of negative
influence (f1 and f2) lead to negative scores, ratings of no
influence (f3) were ignored, and ratings of positive influence
(f4 and f5) lead to positive scores.

SMAC needs an optimization goal to be able to optimize
hyperparameters. As a maximization goal, we choose the

relative number of cells being assigned a score less than
the mean score of the non-ignored wind farm cells. The
hyperparameter values λ ≈ 0.359 and γ ≈ 0.023 maximize
this goal with about 82.8% of cells being assigned a score
less than the non-ignored wind park mean score. With these
hyperparameter settings we computed a rough scoring of all
cells in our dataset which we then used later to choose reliable
negative samples for our AI model training.

C. AI Model

The goal of WindGISKI is to train an AI which proposes
suitable areas for constructing wind farms. However, we do not
simply want to replicate decisions by experts but rather to use
the rough scoring from the previous subsection as a guide. The
goal is for the AI to be able to discover new suitable areas
which experts have not discovered yet so far. Therefore we
implemented three different AI model variants with different
levels of reliance on the survey-based scoring.

The first two variants are based on how the model is
trained while being flexible wrt. the model architecture. The
third variants requires a specific kind of model architecture in
addition to a specific way of training:

1) Binary classification
2) Metric learning
3) Normalizing flows
Our first variant treats the problem as a binary classification.

The model is trained to assign high logits (= scores) to positive
samples taken from non-ignored wind farms and low, even
negative, logits to negative samples chosen based on the rough
scoring from the previous subsection. We train the model to
minimize the cross-entropy

H() = −
∑

cls∈{neg,pos}

1y=cls · log (p(cls|x))

where x is a vector of length |Cm| from our data tensor,
i.e., a vector describing all the features of a single cell, and
y ∈ {neg, pos} defines whether the sample x is a positive or
negative sample. log (p(cls|x)) is the model’s prediction. The
logits log (p(pos|x)) predicted by a model trained this way
can be used as a score for each cell.

To choose which samples to use as negative samples we
first determined the number of positive sample cells n in each
federal state. Since federal state laws differ wrt. to wind energy
we chose as many negative samples from each federal state as
there positive samples in that state. We ordered all candidate
cells, i.e., cells not excluded (cf. Ce in subsection III-A) which
are not part of an existing wind farm, by their expert-based
score in ascending order. We then randomly chose n negative
samples from the bottom 3n samples of this ordered list, i.e.,
we randomly chose from a subset of candidates likely to be
good negative samples.

Modern models in other domains such as natural language
processing or computer vision often are based on a transformer
architecture such as OpenAI’s famous GPT-line of models
[17], [18]. However, these models require a far larger amount
of training samples than we can provide. We therefore used

Linear

LayerNorm

GELU

Dropout

Linear

N x

log(p(pos |x))

x

context

information

Fig. 4. The architecture of the MLP we evaluated. Details on N (how many
times we repeated the Linear-LayerNormalization-GELU-Activation-block)
and the hidden dimensions after each Linear layer can be found in section IV.
The context information is an optional vector which is concatenated with the
output vector of the Dropout layer to form the input of the last Linear layer.

an older but still performant multi-layer perception (MLP)
[19] architecture as shown in Fig. 4. MLPs are even still
used as components within transformers, e.g., the feed forward
blocks in [17]. Inspired by the design of modern convolutional
neural networks (CNNs) [20], [21], we used layer normal-
ization instead of batch normalization and GELU instead of
ReLU as activation function. Therefore, our modernized MLP
consists of several blocks, each of which consists of a linear
transformation layer followed by a layer normalization layer
and a GELU layer. After the final such block, we apply dropout
[22] before applying a final linear transformation of the model
features into log (p(pos|x)) (it is not necessary to compute
log (p(neg|x)) explicitly to compute the binary cross entropy).
The input of our MLP is a vector x describing a single cell
of our dataset. Optionally, we provide context information
describing the surroundings if the cell represented by x. If
we do so, we concatenate the context feature vector with the
output of the dropout layer before applying the final linear
transformation. Since this changes the number of weights of
the last layer, in each experiment we decide whether to always
use context information or to never use context information.

In order to be able to train deeper models with more overall
layers, modern models use residual connections, i.e., the input
of certain layers is added to the output of later layers [17],
[23]. To take advantage of this, we also evaluated an MLP
with residual connections as shown in Fig. 5. Keeping in line
with [23] we place the residual connections such that their end,
where two signals are added together, are placed just after a
normalization and before an activation function application.
For the residual connection to be well-defined, the number of
features going into the repeated residual block and the number
of features going out of the block have to be equal. In order to
allow a different number of features, e.g., for applying non-
linearities in a higher dimensional intermediate space, each
repeated block contains two linear transformations. The first
linear layer may map the features to a higher dimensional
space, while the second layer then projects the features back

Linear

LayerNorm

GELU

Dropout

Linear

x N

log(p(pos |x))

x

context

information

Linear

LayerNorm

GELU
Linear

LayerNorm

GELU

Fig. 5. Another MLP architecture we evaluated. Compared to Fig. 4, this
architecture uses residual connections and a larger block that is repeated
several times. Again, details on the configuration can be found in section
IV. Also, the context information is optional and, if present, integrated in the
same way as in the standard MLP, i.e., by concatenation.

into the same space that was used as an input to the block. The
rest of the residual MLP design is the same as in our regular
MLP (Fig. 4) with the exception of the context information,
which, if available, is concatenated to the input of the first
linear layer in every residual block.

For the optional context information we start with a small
image centered around the cell x for which we want to make a
prediction. Each “pixel” of this image is a cell, i.e., this image
has |Cm| channels. We use an image classification model as
feature extractor, as is common for many computer vision tasks
such as segmentation or object detection. We change the first
convolutional layer of the classification model to accept |Cm|
input features and remove the final classification layers. We
flatten the extracted feature map into a vector which is then
used as the context information for the MLPs. Again, due to
the lack of training data, we use an older, smaller, parameter-
efficient model, namely Xception [24], as our feature extractor.

The second training approach we used for our models
is based on metric learning. In metric learning a model is
trained to directly assign scores to input samples, e.g., siamese
networks learn to compute a similarity score for pairs of
inputs. In our case, we compute scores for individual cells.
We use the exact same network architectures as before, but
we use a different loss function. The loss function

L(x1, x2) = ReLU(m(x2)−m(x1) + ∆)

compares two samples x1 and x2. It penalizes the model m
if it assigns a higher score m(xi) to x2 than it does to x1.
The score m(x1) is supposed to be at least ∆ larger than
m(x2). Therefore, x1 is supposed to be a better sample than
x2. We use two kinds of pairs of samples for our loss. First,
we use inter-class pairs, i.e., x1 is a positive sample and x2

is a negative sample. In this case we use a large value for ∆.
Secondly, we use intra-class pairs, i.e., both xi are from the
same class (positive or negative) but x1 has a higher score than
x2 according to the expert-based rough scoring. We do use a

Fig. 6. Coupling blocks which can be used to implement a normalizing flow.
Diagram taken from [25].

smaller value for ∆ in this case but we do not use the actual
difference of the rough scoring. We use the rough scoring as
a ranking rather than a true absolute scoring.

The third and last training approach is based on normalizing
flows [25]. Normalizing flows are invertible models, i.e., they
map vectors of a specific length to vectors of the same length.
However, the output vector is actually in the space of a known
probability distribution, usually a multivariate standard normal
distribution. This can be achieved by a sequence of coupling
blocks as shown in Fig. 6. Each coupling block takes an input
vector and splits it into two components u1 and u2. First, u2,
and optionally context information c, is used to compute the
scaling and translation parameters of an affine transformation
via the submodules s1 and t1. This affine transformation then
transforms u1 into v1 which is used in a similar fashion to
compute an affine transformation of u2 into v2. Then, v1 and
v2 are concatenated into the output of the coupling block. This
sequence of affine transformations is reversible.

Assuming that the output of the final coupling block is in
the space of a multivariate standard normal distribution, the
likelihood of the output vector can be computed. Minimizing
the loss function

L(x) = E
[
∥m(x)∥22

2
− log |J |

]
with the input vector x representing a single cell of our dataset,
the normalizing flow model m and the determinant |J | of the
Jacobian matrix δm

δx , results in maximizing the likelihood of
all samples x shown to the model m. Normalizing flows learn
the distribution of all the samples shown to it. The model will
learn to assign high likelihoods to wind farm cells and low
likelihoods to every cell that is dissimilar. We therefore do
not need the rough scoring in this approach at all.

To increase the transparency of the black box AI models we
use, we use integrated gradients to compute the importance
of each feature. First, we compute the average features of
all cells in our dataset as a baseline x̄. We then, for each
cell, linearly interpolate in multiple steps from the baseline to
the actual cell features, compute the loss and backpropagate
the gradients to the input vector x. The integrated gradient
then is the sum of these input gradients over all interpolation
steps. The relative absolute values of the individual features in
the integrated gradient measure the relative importance of the
features to each other. We further improved this measurement
by using SmoothGrad. SmoothGrad applies the integrated

gradient computation multiple times to each cell x but adds a
small amount of random noise to x each time. The final result
is the average of all integrated gradients for a given cell x.

D. Geographic Information System

In Fig. 7 we show a work-in-progress prototype of our
vision on how to integrate our AI model’s predictions into a
GIS. The screenshot at the top shows an excerpt of Germany
(northern tip of Germany including the island Sylt) and a user
control panel (left-hand side). The excerpt shows Germany as
a heatmap (from purple for low scores over blue and green
to yellow for high scores) with excluded areas (cf. Ce in
subsection III-A) shown in red. Gray is used for cells outside
of Germany, including the sea. A zoomed out preview of all
of Germany can be seen in the bottom-left of the screenshot.

From top to bottom, the control panel allows the user to
select which AI model to use. In the screenshot a model trained
solely on data from the federal state Schleswig-Holstein is
selected in the drop-down menu. Next, the user is able to adjust
the scoring (“Bewertung”) used for the heatmap. Options are
“absolute” (the score range is mapped to the interval [0, 1] with
0 being rendered in purple and 1 being rendered in yellow),
“relative” (each cell x is mapped to a value in v ∈ [0, 1];
v is the relative amount if cells in the training data which
has an equal or lower score than the cell x), and “relative
to wind farms” (same as “relative” but only the wind farm
cells from the training data are used as a reference). The
heatmap can even be turned off, rendering all heatmap pixels
as black instead. The controls also allow the user to scale
certain features (distance to residential buildings is shown in
the screenshot) before the model assigns a score to each cell.
This allows the user to simulate changes in laws, e.g., if a
change in law required all wind turbines to be twice as far
away from residential buildings, settings the corresponding
feature’s factor to 0.5 would simulate this change.

Next, the user is able to choose a target area (“Zielfläche”)
for further evaluation. The current target area is shown as a
magenta square near the center-right of the screenshot. An
actual end-user application would require the user to be able
to specify areas freely as arbitrary polygons. The evaluation
(“Auswerten”) button opens a new window, a mock-up of
which is shown in the bottom-left of Fig. 7. This window
shows the distribution of scores in the target area, as well as
which features were most important in the model’s decision.
A history of recently viewed target areas is also shown for an
easy comparison of areas.

The optimization (“Optimieren”) button leads to a series of
dialogues in which the user can set parameters for areas to
propose. Example parameters are the desired shapes of wind
farms, the number of wind farms, constraints such as distances
to existing wind farms, or the minimum area which should
be proposed for new wind farms. An evolutionary algorithm
is then used to find a configuration of areas satisfying all
constraints and optimizing a desired goal, e.g., maximizing the
average score of the proposed cells. As a last step, the user
can inspect all areas proposed by the evolutionary algorithm

score

distribution:

feature

importance:

history: choose optimization parameters

run evolutionary algorithm

inspect proposed areas

Fig. 7. A work-in-progress prototype demonstrating the integration of our AI model into a GIS. The heatmap uses mock data.

as they could do by choosing a target area directly and using
the evaluation button.

Lastly, the last group of controls allows the user zoom the
excerpt of Germany. The excerpt can be panned by holding
a mouse button and moving the mouse or by clicking on the
desired location in the small preview in the bottom-left. Next
to the preview are controls allowing the user to disable the
exclusion of cells due to certain features in Ce, i.e., fewer
cells will be red. Again, this enables more freedom of choice
for the user and allows adaptation to changes in laws.

IV. EVALUATION

In this section we evaluate our model variants and further
inspect the performance of the best variant in the different
federal states of Germany. But first we introduce our evaluation
metric, since existing metrics only provide a poor signal for
optimization and/or comparison of models.

A. Metrics
In each experiment we applied the standard practice of

partitioning our training data into an actual training subset and
a validation subset (roughly 15% of samples). For the positive
samples we assigned each wind farm to either the training
subset or the validation subset so that all cells of a wind farm
are either used for training or used for validation.

10 0 10
score

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

federal state
wind farms

0.00 0.25 0.50 0.75 1.00
recall

0.0

0.2

0.4

0.6

0.8

1.0

precision-recall curve
relative distribution

Fig. 8. Distribution of scores of model’s prediction (left). The blue curve
shows the distribution of all non-excluded cells of an entire federal state while
the orange curve only shows the score distribution of the wind farm cells. The
right shows two attempts at quantifying the quality of the model. The blue
curve is a precision-recall curve used to compute the average precision while
the orange curve is used to compute our evaluation metric.

We quickly noticed that regular metrics such as accuracy,
precision, or recall did not provide useful information for
comparing models and therefore for optimizing hyperparame-
ters such as the number of layers. Almost all models quickly
achieved 100% accuracy, even on the validation subset. We
tried to shift to the average precision, which is commonly used

in object detection. In Fig. 8 an example is shown. To compute
the average precision, a precision-recall curve is created by
systematically choosing a score threshold to classify cells into
positive or negative. The average precision is the area under
the precision-recall curve and is a value between 0 (bad) and
1 (good). However, since there are far more non-wind farm
cells than wind farm cells in every federal state, the precision
quickly drops to very low values. This is to be expected: even
in the federal state Schleswig-Holstein, which has a relatively
dense distribution of wind farms, there are almost 90 times as
many non-excluded non-wind farm cells as wind farm cells. If
we assume that just 1% if those cells are actually very suitable
for new wind farms, the number of non-wind farm cells in the
precision computation quickly outnumbers the total number of
wind farm cells in the entire federal state. This can be observed
in the example in Fig. 8. However, the actual distribution of
scores in the example is actually desirable. The wind farms
are assigned high scores while the federal state overall has
some good, some mediocre, and some unsuited cells, just as
we should reasonably expect.

Our metric uses a similar approach to the average precision
to compare the relative location of two probability distri-
butions while being independent of the absolute number of
cells/samples in either distribution. We want most of the mass
of our distribution of positive samples to be on the higher end
of the overall distribution of all samples/cells, just as shown
in the left subplot of Fig. 8. For the horizontal coordinate x
of the orange curve in the right subplot, we use an approach
similar to the recall. We choose score thresholds t such that
x% of all cells in a federal state have a score of t or less.
For the vertical coordinate, we compute the relative amount
of wind farm cells which have a score equal to or higher than
t. We can use the orange curve in the left subplot to do so.
The meaning of the orange curve in the right subplot can be
interpreted as follows: as you move along the horizontal axis,
you go from the worst scores in the federal state to the best
scores. The vertical axis then tells you the relative amount
wind farms which are at least as good as this score. The curve
for our metric is always monotonically decreasing. As the final
evaluation metric we compute the area under this curve, just
as is done for the average precision. We call our curve the
relative distribution and therefore our evaluation metric the
average relative distribution (ARD).

B. Model Variants

In a first experiment we compared the three different model
training variants with the results shown in Figures 9 and 10.
In these experiments we not only randomly picked a model
training variant and model architecture, but we also randomly
chose the learning rate as a first step in a hyperparameter
optimization process. All MLP models were trained with
N = 4 blocks with a decreasing number of output features of
the linear layers (256, 192, 128, 64). The residual MLP model
used N = 8 blocks with the residual feature dimension set to
128, i.e., the first linear layer in each residual block expected
an 128 dimensional input vector (before concatenation of the

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

100

AR
D

[%
]

training subset

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

100
validation subset

Cls
ML
NF

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

val_full_ard (best)

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

100

AR
D

[%
]

training subset

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

100
validation subset

0
32

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

val_full_ard (best)

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80.0

82.5

85.0

87.5

90.0

92.5

95.0
AR

D
[%

]
training subset

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80.0

82.5

85.0

87.5

90.0

92.5

95.0
validation subset

MLP
ResidualMLP

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

89

90

91

92

93

94

95

96

val_full_ard (best)

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80

82

84

86

88

90

92

94

AR
D

[%
]

training subset

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80

82

84

86

88

90

92

94

validation subset

0 (Classification)
32 (Classification)

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

90

91

92

93

94

95

96

val_full_ard (best)

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80

82

84

86

88

90

92

94

AR
D

[%
]

training subset

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80

82

84

86

88

90

92

94

validation subset

MLP
Res. MLP

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

90

91

92

93

94

95

96

val_full_ard (best)

Fig. 9. The three different model training variants we evaluated: binary
classification, metric learning and normalizing flows. We tested each variant
with and without the optional context information. Binary classification and
metric learning models were tested with our MLP architecture (Fig. 4) and
our residual MLP architecture (Fig. 5). Each data point is the performance a
model trained solely on the federal state Schleswig-Holstein using a random
learning rate.

optional context information if present). The feature dimension
between the two linear layers in each residual block was set
to 256. The dropout probability was set to 0.1 for both model
architectures. For the normalizing flow models, we used ten
coupling blocks and all submodules si and ti consisted of two
linear layers with a leaky ReLU activation in between and
no normalization. The number of input and output features
of each submodule was defined by how the input vectors of
each coupling block got split into u1 and u2. We used 256
features as an intermediate feature dimension between the
two linear layers in each submodule. When using optional
context information, we used Xception to generate feature
maps. Xception eventually increases the feature dimension of
the feature maps it computes to 728 and more. We decided
to limit all convolutional layers to no more than 256 features
to reduce the model size and account for the limited amount
of available training data. The “images” created extended 32
cells in each direction (north, east, south, west) from the
center cell x which was to be scored. Xception uses strided
convolutionas in five places to downsample the input image,
i.e., the resulting feature map had a height and width of 2
spatial units (downsampled by 25 = 32 along each axis) and
a feature dimension of 256 features. This was flattened into
a 1024-dimensional contextual information vector. We trained
all models for 25 epochs.

As can be seen in Fig. 9, normalizing flows are able
to learn the training subset by heart but fail to generalize
well to the validation subset. They also perform worse when
adding context information. Both MLP-based model training
variants performed well with a slight advantage to the binary
classification-based approach. There is a slight increase in
performance on the validation subset. For computing the vali-
dation performance we not only removed all cells belonging to
training wind farms but also all cells within a 250m vicinity of
those cells since we already noticed during development that
models often tend to rate the immediate vicinity of existing
wind farms very highly, i.e., they tend to suggest to simply

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

100

AR
D

[%
]

training subset

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

100
validation subset

Cls
ML
NF

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

val_full_ard (best)

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

100

AR
D

[%
]

training subset

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

100
validation subset

0
32

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

30

40

50

60

70

80

90

val_full_ard (best)

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80.0

82.5

85.0

87.5

90.0

92.5

95.0

AR
D

[%
]

training subset

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80.0

82.5

85.0

87.5

90.0

92.5

95.0
validation subset

MLP
ResidualMLP

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

89

90

91

92

93

94

95

96

val_full_ard (best)

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80

82

84

86

88

90

92

94

AR
D

[%
]

training subset

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80

82

84

86

88

90

92

94

validation subset

0 (Classification)
32 (Classification)

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

90

91

92

93

94

95

96

val_full_ard (best)

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80

82

84

86

88

90

92

94

AR
D

[%
]

training subset

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

80

82

84

86

88

90

92

94

validation subset

MLP
Res. MLP

0.000 0.002 0.004 0.006 0.008 0.010
learning rate

90

91

92

93

94

95

96

val_full_ard (best)

Fig. 10. Subset of the data shown in Fig. 9. Only binary classification data
points are shown.

0 5 10 15 20 25
epoch

0.88

0.89

0.90

0.91

0.92

AR
D

[%
]

train_full: (32, 5)
mean
range

0 5 10 15 20 25
epoch

0.88

0.90

0.92

0.94

0.96
val_full: (32, 5)

mean
range

0 5 10 15 20 25
epoch

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.915

AR
D

[%
]

(32, 4)
mean
range

0 5 10 15 20 25
epoch

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96
(32, 4)

mean
range

0 5 10 15 20 25
epoch

0.87

0.88

0.89

0.90

0.91

0.92

AR
D

[%
]

(32, 3)
mean
range

0 5 10 15 20 25
epoch

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

(32, 3)
mean
range

0 5 10 15 20 25
epoch

0.87

0.88

0.89

0.90

0.91

AR
D

[%
]

(16, 5)
mean
range

0 5 10 15 20 25
epoch

0.86

0.88

0.90

0.92

0.94

0.96
(16, 5)

mean
range

0 5 10 15 20 25
epoch

0.87

0.88

0.89

0.90

0.91

AR
D

[%
]

(16, 4)
mean
range

0 5 10 15 20 25
epoch

0.84

0.86

0.88

0.90

0.92

0.94

0.96

(16, 4)
mean
range

0 5 10 15 20 25
epoch

0.85

0.86

0.87

0.88

0.89

0.90

0.91

AR
D

[%
]

(16, 3)
mean
range

0 5 10 15 20 25
epoch

0.84

0.86

0.88

0.90

0.92

0.94

0.96
(16, 3)

mean
range

0 5 10 15 20 25
epoch

0.86

0.87

0.88

0.89

0.90

0.91

AR
D

[%
]

(8, 4)
mean
range

0 5 10 15 20 25
epoch

0.88

0.90

0.92

0.94

0.96

(8, 4)
mean
range

0 5 10 15 20 25
epoch

0.87

0.88

0.89

0.90

0.91

AR
D

[%
]

(8, 3)
mean
range

0 5 10 15 20 25
epoch

0.88

0.90

0.92

0.94

0.96

(8, 3)
mean
range

0 5 10 15 20 25
epoch

0.85

0.86

0.87

0.88

0.89

0.90

AR
D

[%
]

(4, 3)
mean
range

0 5 10 15 20 25
epoch

0.84

0.86

0.88

0.90

0.92

0.94

0.96

(4, 3)
mean
range

0 5 10 15 20 25
epoch

0.865

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

AR
D

[%
]

(0, 3)
mean
range

0 5 10 15 20 25
epoch

0.86

0.88

0.90

0.92

0.94

0.96
(0, 3)

mean
range

0 5 10 15 20 25
epoch

89

90

91

92

93

94

AR
D

[%
]

training subset
(32, 5)
(32, 4)
(32, 3)
(16, 5)
(16, 4)

(16, 3)
(8, 4)
(8, 3)
(4, 3)
(0, 3)

0 5 10 15 20 25
epoch

89

90

91

92

93

94

validation subset

Fig. 11. Mean performance of the residual MLP model trained via binary
classification. The configuration tuple specifies the extend of the context (first
value) used in each cardinal direction and the number of downsampling steps
used (second value). In the previous experiment (Figures 9 and 10) we only
tested the configurations (0, 3) and (32, 5). The second value is irrelevant
when using no context information (first value = 0).

increase existing wind farms instead of proposing new, well
suited areas. Therefore, we remove the immediate vicinity of
the training wind farms for validation purposes. As can be
seen in Fig. 10, the residual MLP performed slightly better
than the regular MLP. We therefore chose to focus on the
residual MLP trained using binary classification as our best
model variant from this point on.

We could not draw conclusions whether context information
is actually helpful or not from the previous experiment. After
deciding on the best model variant we ran another experiment
in which we tested different context information configuration
15 times each. The mean performance across training epochs
is shown in Fig. 11. When using less than the default five
downsampling steps, we removed the later downsampling
steps by setting the corresponding strides to 1 (from 2) while
keeping the earlier downsampling steps. This is a common
strategy also used in semantic segmentation models to increase
spatial resolution (fewer downsampling steps) while keeping
computational costs low (removing the late rather than early
downsampling steps). While a large context of 32 helped with
training performance, validation performance was actually best
for the (16, 4) and (8, 3) configurations. Since there is no
significant difference between those two configurations, we

TABLE I
MEAN PERFORMANCE AND STANDARD DEVIATION OF THE BEST MODEL

(RESIDUAL MLP; BINARY CLASSIFICATION; OPTIMIZEZD
HYPERPARAMETERS) TRAINED AND EVALUATED ON DIFFERENT FEDERAL

STATES. WE OMITTED THE CITY STATES BERLIN, BREMEN AND
HAMBURG BECAUSE ALMOST NO LARGE ENOUGH WIND TURBINES HAVE

BEEN COMMISSIONED IN THEIR AREA IN RECENT YEARS.

federal training validation
state performance (ARD) performance (ARD)

Baden-Württemberg 93.4%± 0.5% 77.4%± 1.4%
Bayern 81.2%± 2.8% 79.0%± 4.1%

Brandenburg 88.7%± 0.5% 86.7%± 1.1%
Hessen 90.3%± 0.6% 75.1%± 2.5%

Mecklenburg-Vorpommern 87.5%± 0.7% 83.5%± 1.3%
Niedersachsen 84.2%± 0.9% 86.1%± 0.9%

Nordrhein-Westfalen 88.9%± 0.5% 84.3%± 0.7%
Rheinland-Pfalz 89.9%± 0.7% 90.2%± 1.0%

Saarland 93.1%± 1.1% 87.8%± 1.5%
Sachsen 95.9%± 0.8% 77.1%± 6.1%

Sachsen-Anhalt 91.5%± 0.6% 92.6%± 1.0%
Schleswig-Holstein 89.1%± 0.5% 95.4%± 0.4%

Thüringen 94.7%± 0.6% 86.5%± 1.7%
all 86.1%± 0.5% 83.4%± 0.7%

chose (8, 3) as our best configuration going forward. The
downward trend of the validation performance across the
epochs already indicates that we train the models for too long,
an issue we fixed by further hyperparameter optimization.

C. Best Model

After deciding on the best model variant, we ran a random
search to optimize the hyperparameters used for our model. We
used the federal state Schleswig-Holstein for this hyperparam-
eter optimization process. Our optimized hyperparemeters are
as follows. We set the number of input and output features of
both linear layers in the residual blocks to 480 and reduced
the number of blocks N to 7. The dropout probability was
decreased to 0.025 as well. Furthermore did we change the
number of features used by Xception. The model starts with
32 features after the first convolution and increases this number
roughly by a factor of 2 until reaching the final number
of features of 2048. We changed this to 24 after the first
convolution and an increase by a factor of 1.5 up to the final
number of features of 411. We used a learning rate of 0.0019
with the optimizer AdamW [26], [27] and cosine annealing
learning rate schedule [28]. We trained for 14 epochs with a
mini-batch size of 1024, half of which were postive samples
and the other half were negative samples.

Performance results of the optimized model can be found in
Tab. I. The model converges to good solutions, even in federal
states with very few wind farms such as Saarland or Sachsen.
The performance on the training subset ranges from 81.2%
in Bayern to 95.9% in Sachsen. The validation performance
ranges from 75.1% in Hessen to 95.4% in Schleswig-Holstein
and is therefore, as expected, slightly worse than the training
performance. While there still is some room for improvement
in some federal states, the performance is already good enough

to make a prototype as described in subsection III-D very
viable and useful.

V. CONCLUSION

In this paper we presented WindGISKI, a project which
aims to use AI to enhance a geographic information system to
assist users in identifying areas suitable for the construction
of new wind farms. We collected more than 60 geographical
features for use in a large dataset covering Germany. We
then conducted a survey among experts and used the results
to identify a small subset of samples to use as positive
and as negative samples for training a deep neural network
model with residual connections. This model is able to assign
suitability scores to every 50m × 50m square in Germany.
A work-in-progress prototype will make the AI’s prediction
accessible to end users to assist them in choosing suitable
areas and help them understand why an area is considered
suitable or not.

In future work we want to validate our AI model based
on expert knowledge. The survey we conducted unfortunately
had too few participants. We therefore are considering using
statistical measurements which do not rely on absolute values
such as the rank correlation for validation. A high rank
correlation, i.e., the AI model and the experts rank feature
importance and/or cell scores similarly, would point to the
AI model actually reflecting expert knowledge. Another, more
involved, approach could be to have experts manually score
certain areas and compare their results to the AI’s predictions.
Or the experts could choose suitable areas from a larger region
and, once the evolutionary algorithm part of our prototype
is done, we could compare their choice to our prototypes
optimization routine.

REFERENCES

[1] Fachagentur Wind, “Hemmnisse beim ausbau der windenergie
an land - ergebnisse einer branchenbefragung.” https://www.
fachagentur-windener-gie.de/fileadmin/files/Veroeffentlichungen/
Genehmigung/FA Wind Ergebnisse Branchenumfrage 06-2022.pdf,
2022. Accessed May 17th, 2024.

[2] Bund-Länder-Kooperationsausschusses, “Bericht des bund-
länder-kooperationsausschusses zum stand des ausbaus der
erneuerbaren energien sowie zu flächen, planungen und
genehmigungen für die windenergienutzung an land, an die
bundesregierung.” https://www.bmwk.de/Redaktion/DE/Downloads/
E/EEG-Kooperationsausschuss/2021/, 2021. Accessed May 17th, 2024.

[3] Fachagentur Wind, “Typische verfahrenslaufzeiten für
genehmigung und realisierung, 30. wind-energietage
2022.” https://www.fachagentur-windenergie.de/fileadmin/files/
Veranstaltungen/2022-11-10 Kompetenztag Windenergietage/FA
Wind Kompetenztag Verfahrenslaufzeiten Quentin 10-11-2022.pdf,
2022. Accessed May 17th, 2024.

[4] R. Mari, L. Bottai, C. Busillo, F. Calastrini, B. Gozzini, and G. Gualtieri,
“A gis-based interactive web decision support system for planning wind
farms in tuscany (italy),” Renewable Energy, vol. 36, no. 2, pp. 754–763,
2011.

[5] M. A. Boggie, M. J. Butler, S. E. Sesnie, B. A. Millsap, D. R.
Stewart, G. M. Harris, and J. C. Broska, “Forecasting suitable areas for
wind turbine occurrence to proactively improve wildlife conservation,”
Journal for Nature Conservation, vol. 74, p. 126442, 2023.

[6] S. Grassi, F. Veronesi, R. Schenkel, C. Peier, J. Neukom, S. Volkwein,
M. Raubal, and L. Hurni, “Mapping of the global wind energy potential
using open source gis data,” in 2nd Int. Conf. Energy Environ. bringing
together Eng. Econ, no. June, p. 6, 2015.

[7] P. Emami and A. Marzban, “The synergy of artificial intelligence (ai) and
geographic information systems (gis) for enhanced disaster management:
Opportunities and challenges,” Disaster Medicine and Public Health
Preparedness, pp. 1–3, 2023.

[8] S. R. Samaei and M. Ghahferokhi, “Ai-enhanced gis solutions for
sustainable coastal management: Navigating erosion prediction and
infrastructure resilience,” in 2th International Conference on Creative
achievements of architecture, urban planning, civil engineering and
environment in the sustainable development of the Middle East, 2023.

[9] M. Hamano, S. Shiozawa, S. Yamamoto, N. Suzuki, Y. Kitaki, and
O. Watanabe, “Development of a method for detecting the planting and
ridge areas in paddy fields using ai, gis, and precise dem,” Precision
Agriculture, vol. 24, no. 5, pp. 1862–1888, 2023.

[10] H. Ouchra, A. Belangour, and A. Erraissi, “An overview of geospatial
artificial intelligence technologies for city planning and development,”
in 2023 Fifth International Conference on Electrical, Computer and
Communication Technologies (ICECCT), pp. 1–7, IEEE, 2023.

[11] S. Taşan, “Estimation of groundwater quality using an integration of
water quality index, artificial intelligence methods and gis: Case study,
central mediterranean region of turkey,” Applied Water Science, vol. 13,
no. 1, p. 15, 2023.

[12] R. Bill, J. Blankenbach, M. Breunig, J.-H. Haunert, C. Heipke, S. Herle,
H.-G. Maas, H. Mayer, L. Meng, F. Rottensteiner, et al., “Geospatial in-
formation research: state of the art, case studies and future perspectives,”
PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation
Science, vol. 90, no. 4, pp. 349–389, 2022.

[13] Z. Li and H. Ning, “Autonomous gis: the next-generation ai-powered
gis,” International Journal of Digital Earth, vol. 16, no. 2, pp. 4668–
4686, 2023.

[14] R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2d euclidean
distance transform algorithms: A comparative survey,” ACM Computing
Surveys (CSUR), vol. 40, no. 1, pp. 1–44, 2008.

[15] T. Saito and J.-I. Toriwaki, “New algorithms for euclidean distance
transformation of an n-dimensional digitized picture with applications,”
Pattern recognition, vol. 27, no. 11, pp. 1551–1565, 1994.

[16] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng,
C. Benjamins, T. Ruhkopf, R. Sass, and F. Hutter, “Smac3: A versatile
bayesian optimization package for hyperparameter optimization,” Jour-
nal of Machine Learning Research, vol. 23, no. 54, pp. 1–9, 2022.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[18] O. et al., “Gpt-4 technical report,” 2024.
[19] F. Rosenblatt, “The perceptron: a probabilistic model for information

storage and organization in the brain.,” Psychological review, vol. 65,
no. 6, p. 386, 1958.

[20] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11976–11986, 2022.

[21] M.-H. Guo, C.-Z. Lu, Q. Hou, Z. Liu, M.-M. Cheng, and S.-M.
Hu, “Segnext: Rethinking convolutional attention design for semantic
segmentation,” Advances in Neural Information Processing Systems,
vol. 35, pp. 1140–1156, 2022.

[22] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[24] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1251–1258, 2017.

[25] L. Ardizzone, C. Lüth, J. Kruse, C. Rother, and U. Köthe, “Guided image
generation with conditional invertible neural networks,” arXiv preprint
arXiv:1907.02392, 2019.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[27] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[28] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

